Worked-out Problems on Volume of a Cuboid

Here we will solve worked-out problems on volume of a cuboid.

How to calculate volume of a cuboid?

1. Find the volume of a cuboid of length 20 cm, breadth 15 cm and height 10 cm. 

Solution:

Length of the cuboid = 20 cm

Breadth of the cuboid = 15 cm 

Height of the cuboid = 10 cm

Therefore, volume of the cuboid = length × breadth × height

= (20 × 15 × 10) cm³ 

= 3000 cm³


2. A wall has to be built with length 8 m, thickness 3 m and height 5 m. Find the volume of the wall in cubic cm. 


Solution:

Length of the wall = 8 m or 800 cm

Thickness of the wall = 3 m or 300 cm

Height of the wall = 5 m or 500 cm

Therefore, volume of the wall = length × breadth × height

= (800 × 300 × 500) cm³

= 120000000 cm³


3. If the volume of a room is 792 m³ and the area of the floor is 132 m², find the height of the room.

Solution:

Volume of the room = 792 m³

Area of the floor (l × b) = 132 m²

Therefore, height of the room = (Volume of the room)/(area of the floor)

= 792 m³/132 m² = 6m


4. Length, breadth and height of a room are 6 m 5 m and 3 m respectively. Find the volume of the room.

Solution:

Length of the room = 6 m

Breadth of the room = 5 m

Height of the room = 3 m

Therefore, volume of the room = length × breadth × height

= 6 × 5 × 3 m³

= 90 m³


5. External dimensions of a wooden cuboid are 30 cm × 25 cm × 20 cm. If the thickness of the wood is 2 cm all around, find the volume of the wood contained in the cuboid formed.

Solution:

External length of the cuboid = 30 cm

External breadth of the cuboid = 25 cm

External height of the cuboid = 25 cm

Therefore, External volume of the cuboid = (30 × 25 × 20) cm³

                                                       = 15000 cm³

Therefore, Internal volume of the cuboid = (26 × 21 × 16) cm³

                                                       = 8736 cm³

Therefore, Volume of wood = External Volume - Internal Volume

= 15000 cm³ - 8736 cm³

= 6264 cm³


These are the above step-by-step detailed explanation in calculating worked-out problems on volume of a cuboid.



 Volume and Surface Area of Solids

Volume of Cubes and Cuboids

Worked-out Problems on Volume of a Cuboid






7th Grade Math Problems 

8th Grade Math Practice 

From Worked-out Problems on Volume of a Cuboid to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 10, 24 02:35 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More