Worked-out Problems on Volume of a Cuboid

Here we will solve worked-out problems on volume of a cuboid.

How to calculate volume of a cuboid?

1. Find the volume of a cuboid of length 20 cm, breadth 15 cm and height 10 cm. 

Solution:

Length of the cuboid = 20 cm

Breadth of the cuboid = 15 cm 

Height of the cuboid = 10 cm

Therefore, volume of the cuboid = length × breadth × height

= (20 × 15 × 10) cm³ 

= 3000 cm³


2. A wall has to be built with length 8 m, thickness 3 m and height 5 m. Find the volume of the wall in cubic cm. 


Solution:

Length of the wall = 8 m or 800 cm

Thickness of the wall = 3 m or 300 cm

Height of the wall = 5 m or 500 cm

Therefore, volume of the wall = length × breadth × height

= (800 × 300 × 500) cm³

= 120000000 cm³


3. If the volume of a room is 792 m³ and the area of the floor is 132 m², find the height of the room.

Solution:

Volume of the room = 792 m³

Area of the floor (l × b) = 132 m²

Therefore, height of the room = (Volume of the room)/(area of the floor)

= 792 m³/132 m² = 6m


4. Length, breadth and height of a room are 6 m 5 m and 3 m respectively. Find the volume of the room.

Solution:

Length of the room = 6 m

Breadth of the room = 5 m

Height of the room = 3 m

Therefore, volume of the room = length × breadth × height

= 6 × 5 × 3 m³

= 90 m³


5. External dimensions of a wooden cuboid are 30 cm × 25 cm × 20 cm. If the thickness of the wood is 2 cm all around, find the volume of the wood contained in the cuboid formed.

Solution:

External length of the cuboid = 30 cm

External breadth of the cuboid = 25 cm

External height of the cuboid = 25 cm

Therefore, External volume of the cuboid = (30 × 25 × 20) cm³

                                                       = 15000 cm³

Therefore, Internal volume of the cuboid = (26 × 21 × 16) cm³

                                                       = 8736 cm³

Therefore, Volume of wood = External Volume - Internal Volume

= 15000 cm³ - 8736 cm³

= 6264 cm³


These are the above step-by-step detailed explanation in calculating worked-out problems on volume of a cuboid.



 Volume and Surface Area of Solids

Volume of Cubes and Cuboids

Worked-out Problems on Volume of a Cuboid






7th Grade Math Problems 

8th Grade Math Practice 

From Worked-out Problems on Volume of a Cuboid to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More