Rules of Roman Numeration

We will learn about Roman Numeration and its rules. We know that there are seven basic Roman Numerals. They are I, V, X, L, C, D and M. These numerals stand for the number 1, 5, 10, 50, 100, 500 and 1000 respectively. We already learned about the numerals I, V, X, L and C and now we will learn about the remaining two numerals.

There is another symbol ‘─’ which is called bar. If bar is place over a numeral, it is multiplied by 1000. Thus, V and XII stand for 5000 and 12000 respectively.

Rules of Roman Numeration:

Rules of Roman Numerals

1. First Rule: Numerals of the same value are added.

When the same symbol is repeated, the value of the symbol is added to get the value of the numeral. I, X and C can be repeated only up to three times. i.e., We can use I, X, C and M only thrice in a combination.

Symbols V, L and D are never repeated.

Symbols V, L and D cannot be used more than once in a number. We write V for 5 but we cannot write VV for 10 or VVV for 15.

Similarly, we write L for 50 but we cannot write LL = 100 or LLL 150.

D can also not be repeated in any number. We write D for 500 but we cannot write DD for 1000 or DDD for 1500.


For example:

I  stands for 1

II  stands for 1 + 1 = 2

II stands for 1 + 1 + 1 = 3

X stands for 10

XX stands for 10 + 10 = 20

XXX stands for 10 + 10 + 10 = 30

C  stands for 100

CC  stands for 100 + 100 = 200

CCC stands for 100 + 100 + 100 = 300

M stands for 1000

MM stands for 1000 + 1000 = 2000

MMM stands for 1000 + 1000 + 1000 = 3000

But we cannot write IIII for 4, XXXX for 40, CCCC for 400 or MMMM for 4000.


Note:

(i) Symbols V, L and D are not repeated.

(ii) A symbol cannot be repeated more than three times.


2. Second Rule: A symbol of smaller value put on the right of greater value symbol is added to it.

The values of the symbols are added or subtracted to find the values of the Roman numerals. When the smaller numeral is written to the right of a greater numeral, the value of the smaller numeral is added to the greater numeral. 

I, X, C are the only symbols used for addition as well as subtraction. When we use them to the right of a number, they are added to the number.

For example:

VI stands for 5 + 1 = 6

XI stands for 5 + 1 = 6

LX = 50 + 10 = 60

CV = 100 + 5 = 105

CX = 100 + 10 = 110

CXX stands for 100 + 10 + 10 = 120

DC = 500 + 100 = 600

MC = 1000 + 100 = 1100

MCL stands for 1000 + 100 + 50 = 1150


Note: (i) We can add X to L and C only.

LX = 50 + 10 = 60

CX = 100 + 10 = 110

We cannot write MX for 1010

(ii) We can add C to D and M only.

For example,

DC = 500 + 100 = 600

MC = 1000 + 100 = 1100


3. Third Rule. A symbol of smaller value put on the left of greater value symbol is subtracted from it.

When the smaller numeral is written to the left of a greater numeral, the value of the smaller numeral is subtracted from the greater numeral.

I, X, C are the only symbols used for addition as well as subtraction. When we use them to the left of a number, they are subtracted from the number

The V, L and D are not subtracted. Only one number can be subtracted from another.

For example:

IV stands for 5 - 1 = 4

IX stands for 10 - 1 = 9

XL stands for 50 - 10 = 40

XC stands for 100 - 10 = 90

CD stands for 500 - 100 = 400

CM stands for 1000 - 100 = 900


Note:

(i) Symbol V, L and D are never subtracted.

(ii) Symbol I can be subtracted from V and X only.

(iii) Symbol X can be subtracted from L and C only as L and C are greater than X.

For example,

XL = 50 - 10 = 40

XC = 100 - 10 = 90

We cannot write XD for 490

(iv) Symbol C can be subtracted from D and M only.

For example,

CD = 500 - 100 = 400

CM = 1000 - 100 = 900


4. Fourth Rule. A symbol of smaller value, put between two symbols of greater value is subtracted from the symbol on its right.

When the symbols are combined to make a numeral, the value of the symbol between the two symbols is subtracted from the value of the symbol on its right.

For example:

XIV stands for 10 + 5 - 1 = 14

LIX stands for 50 + 10 - 1 = 59

XCIX stands for 90 + 10 - 1 = 99

XLIX stands for 40 + 10 - 1 = 49


Note:

(i) We never use I to the left or right of any number except V and X.

For example,

VI = 6

IV = 4

XI = 11

IX = 9

We cannot write LI = 51 or ID = 499

(ii) Bigger Roman numbers are also expressed in the same way as we express smaller Roman numbers.

For example, 2511 is expressed as MMDXI.

             (MMDXI = 1000 + 1000 + 500 + 10 + 31


1. What are the 7 symbols to form different Roman numbers?

Answer:

We use seven symbols — LV, XL, C, D and M to form different Roman numbers. As you know that I means 1, V means 5, X means 10, L means 50, C means 100, D means 500 and M means 1000.

You might like these




5th Grade Math Problems

From Roman Numeration to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Successor and Predecessor | Successor of a Whole Number | Predecessor

    Jul 29, 25 12:59 AM

    Successor and Predecessor
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  2. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 28, 25 01:52 PM

    Volume of a Cuboids
    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  3. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  4. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  5. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More