Proof of De Morgan’s Law

Here we will learn how to proof of De Morgan’s law of union and intersection.


Definition of De Morgan’s law: 

The complement of the union of two sets is equal to the intersection of their complements and the complement of the intersection of two sets is equal to the union of their complements. These are called De Morgan’s laws.

For any two finite sets A and B;

(i) (A U B)' = A' ∩ B' (which is a De Morgan's law of union).

(ii) (A ∩ B)' = A' U B' (which is a De Morgan's law of intersection).


Proof of De Morgan’s law: (A U B)' = A' ∩ B'

Let P = (A U B)' and Q = A' ∩ B'

Let x be an arbitrary element of P then x ∈ P ⇒ x ∈ (A U B)'

⇒ x ∉ (A U B)

⇒ x ∉ A and x ∉ B

⇒ x ∈ A' and x ∈ B'

⇒ x ∈ A' ∩ B'

⇒ x ∈ Q

Therefore, P ⊂ Q …………….. (i)

Again, let y be an arbitrary element of Q then y ∈ Q ⇒ y ∈ A' ∩ B'

⇒ y ∈ A' and y ∈ B'

⇒ y ∉ A and y ∉ B

⇒ y ∉ (A U B)

⇒ y ∈ (A U B)'

⇒ y ∈ P

Therefore, Q ⊂ P …………….. (ii)

Now combine (i) and (ii) we get; P = Q i.e. (A U B)' = A' ∩ B'


Proof of De Morgan’s law: (A ∩ B)' = A' U B'

Let M = (A ∩ B)' and N = A' U B'

Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'

⇒ x ∉ (A ∩ B)

⇒ x ∉ A or x ∉ B

⇒ x ∈ A' or x ∈ B'

⇒ x ∈ A' U B'

⇒ x ∈ N

Therefore, M ⊂ N …………….. (i)

Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'

⇒ y ∈ A' or y ∈ B'

⇒ y ∉ A or y ∉ B

⇒ y ∉ (A ∩ B)

⇒ y ∈ (A ∩ B)'

⇒ y ∈ M

Therefore, N ⊂ M …………….. (ii)

Now combine (i) and (ii) we get; M = N i.e. (A ∩ B)' = A' U B'


Examples on De Morgan’s law: 

1. If U = {j, k, l, m, n}, X = {j, k, m} and Y = {k, m, n}.

Proof of De Morgan's law: (X ∩ Y)' = X' U Y'.

Solution: 

We know,  U = {j, k, l, m, n}

X = {j, k, m}

Y = {k, m, n}

(X ∩ Y) = {j, k, m} ∩ {k, m, n}           

           = {k, m} 

Therefore, (X ∩ Y)' = {j, l, n}  ……………….. (i)

Again, X = {j, k, m} so, X' = {l, n}

and    Y = {k, m, n} so, Y' = {j, l}

X'  Y' = {l, n}  {j, l}

Therefore,  X' ∪ Y' = {j, l, n}   ……………….. (ii)


Combining  (i)and (ii) we get;

(X ∩ Y)' = X' U Y'.          Proved



2. Let U = {1, 2, 3, 4, 5, 6, 7, 8}, P = {4, 5, 6} and Q = {5, 6, 8}. 
Show that (P ∪ Q)' = P' ∩ Q'.

Solution:

We know, U = {1, 2, 3, 4, 5, 6, 7, 8}

P = {4, 5, 6}

Q = {5, 6, 8}

P ∪ Q = {4, 5, 6} ∪ {5, 6, 8} 

         = {4, 5, 6, 8}

Therefore, (P ∪ Q)' = {1, 2, 3, 7}   ……………….. (i)


Now P = {4, 5, 6} so, P' = {1, 2, 3, 7, 8}

and Q = {5, 6, 8} so, Q' = {1, 2, 3, 4, 7}

P' ∩ Q' = {1, 2, 3, 7, 8} ∩ {1, 2, 3, 4, 7}

Therefore, P' ∩ Q' = {1, 2, 3, 7}   ……………….. (ii)


Combining  (i)and (ii) we get;

(P ∪ Q)' = P' ∩ Q'.          Proved

Set Theory

Sets

Representation of a Set

Types of Sets

Pairs of Sets

Subset

Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets



7th Grade Math Problems

8th Grade Math Practice

From Proof of De Morgan’s Law to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Apr 20, 24 05:39 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  2. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 20, 24 05:29 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More

  3. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 04:01 PM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  4. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:50 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  5. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 19, 24 01:22 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More