Proof of De Morgan’s Law

Here we will learn how to proof of De Morgan’s law of union and intersection.


Definition of De Morgan’s law: 

The complement of the union of two sets is equal to the intersection of their complements and the complement of the intersection of two sets is equal to the union of their complements. These are called De Morgan’s laws.

For any two finite sets A and B;

(i) (A U B)' = A' ∩ B' (which is a De Morgan's law of union).

(ii) (A ∩ B)' = A' U B' (which is a De Morgan's law of intersection).


Proof of De Morgan’s law: (A U B)' = A' ∩ B'

Let P = (A U B)' and Q = A' ∩ B'

Let x be an arbitrary element of P then x ∈ P ⇒ x ∈ (A U B)'

⇒ x ∉ (A U B)

⇒ x ∉ A and x ∉ B

⇒ x ∈ A' and x ∈ B'

⇒ x ∈ A' ∩ B'

⇒ x ∈ Q

Therefore, P ⊂ Q …………….. (i)

Again, let y be an arbitrary element of Q then y ∈ Q ⇒ y ∈ A' ∩ B'

⇒ y ∈ A' and y ∈ B'

⇒ y ∉ A and y ∉ B

⇒ y ∉ (A U B)

⇒ y ∈ (A U B)'

⇒ y ∈ P

Therefore, Q ⊂ P …………….. (ii)

Now combine (i) and (ii) we get; P = Q i.e. (A U B)' = A' ∩ B'


Proof of De Morgan’s law: (A ∩ B)' = A' U B'

Let M = (A ∩ B)' and N = A' U B'

Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'

⇒ x ∉ (A ∩ B)

⇒ x ∉ A or x ∉ B

⇒ x ∈ A' or x ∈ B'

⇒ x ∈ A' U B'

⇒ x ∈ N

Therefore, M ⊂ N …………….. (i)

Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'

⇒ y ∈ A' or y ∈ B'

⇒ y ∉ A or y ∉ B

⇒ y ∉ (A ∩ B)

⇒ y ∈ (A ∩ B)'

⇒ y ∈ M

Therefore, N ⊂ M …………….. (ii)

Now combine (i) and (ii) we get; M = N i.e. (A ∩ B)' = A' U B'


Examples on De Morgan’s law: 

1. If U = {j, k, l, m, n}, X = {j, k, m} and Y = {k, m, n}.

Proof of De Morgan's law: (X ∩ Y)' = X' U Y'.

Solution: 

We know,  U = {j, k, l, m, n}

X = {j, k, m}

Y = {k, m, n}

(X ∩ Y) = {j, k, m} ∩ {k, m, n}           

           = {k, m} 

Therefore, (X ∩ Y)' = {j, l, n}  ……………….. (i)

Again, X = {j, k, m} so, X' = {l, n}

and    Y = {k, m, n} so, Y' = {j, l}

X'  Y' = {l, n}  {j, l}

Therefore,  X' ∪ Y' = {j, l, n}   ……………….. (ii)


Combining  (i)and (ii) we get;

(X ∩ Y)' = X' U Y'.          Proved



2. Let U = {1, 2, 3, 4, 5, 6, 7, 8}, P = {4, 5, 6} and Q = {5, 6, 8}. 
Show that (P ∪ Q)' = P' ∩ Q'.

Solution:

We know, U = {1, 2, 3, 4, 5, 6, 7, 8}

P = {4, 5, 6}

Q = {5, 6, 8}

P ∪ Q = {4, 5, 6} ∪ {5, 6, 8} 

         = {4, 5, 6, 8}

Therefore, (P ∪ Q)' = {1, 2, 3, 7}   ……………….. (i)


Now P = {4, 5, 6} so, P' = {1, 2, 3, 7, 8}

and Q = {5, 6, 8} so, Q' = {1, 2, 3, 4, 7}

P' ∩ Q' = {1, 2, 3, 7, 8} ∩ {1, 2, 3, 4, 7}

Therefore, P' ∩ Q' = {1, 2, 3, 7}   ……………….. (ii)


Combining  (i)and (ii) we get;

(P ∪ Q)' = P' ∩ Q'.          Proved

Set Theory

Sets

Representation of a Set

Types of Sets

Pairs of Sets

Subset

Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets



7th Grade Math Problems

8th Grade Math Practice

From Proof of De Morgan’s Law to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  2. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 13, 24 02:23 AM

    3-Digit Numbers Crossword
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  3. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 13, 24 01:20 AM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  4. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More

  5. Worksheet on Two Digit Numbers | Numbers in Words | Two-Digit Numbers

    Sep 12, 24 02:09 AM

    Even and Odd Numbers Worksheet
    In worksheet on 2-digit numbers we will write the number which come before, after and in between, write the numerals, write the number names, place value and face value of 2-digit numbers, numbers in…

    Read More