Problems on Principle of Mathematical Induction

Solved Problems on Principle of Mathematical Induction are shown here to prove Mathematical Induction.

Problems on Principle of Mathematical Induction

1. Using the principle of mathematical induction, prove that 

1² + 2² + 3² + ..... + n² = (1/6){n(n + 1)(2n + 1} for all n ∈ N.
 

Solution: 

Let the given statement be P(n). Then, 

P(n): 1² + 2² + 3² + ..... +n² = (1/6){n(n + 1)(2n + 1)}. 

Putting n =1 in the given statement, we get 

LHS = 1² = 1 and RHS = (1/6) × 1 × 2 × (2 × 1 + 1) = 1. 

Therefore LHS = RHS. 

Thus, P(1) is true. 

Let P(k) be true. Then,

P(k): 1² + 2² + 3² + ..... + k² = (1/6){k(k + 1)(2k + 1)}.

Now, 1² + 2² + 3² + ......... + k² + (k + 1)²

                    = (1/6) {k(k + 1)(2k + 1) + (k + 1)²

                    = (1/6){(k + 1).(k(2k + 1)+6(k + 1))}

                    = (1/6){(k + 1)(2k² + 7k + 6})

                    = (1/6){(k + 1)(k + 2)(2k + 3)}

                    = 1/6{(k + 1)(k + 1 + 1)[2(k + 1) + 1]}

⇒ P(k + 1): 1² + 2² + 3² + ….. + k² + (k+1)²

                    = (1/6){(k + 1)(k + 1 + 1)[2(k + 1) + 1]}

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

2. By using mathematical induction prove that the given equation is true for all positive integers.

1 x 2 + 3 x 4 + 5 x 6 + …. + (2n - 1) x 2n = \(\frac{n (n + 1) (4n - 1)}{3}\)

Solution:

From the statement formula

When n = 1,

LHS =1 x 2 = 2

RHS = \(\frac{1(1 + 1) (4 x 1 - 1)}{3}\) = \(\frac{6}{3}\) = 2

Hence it is proved that P (1) is true for the equation.

Now we assume that P (k) is true or 1 x 2 + 3 x 4 + 5 x 6 + …. + (2k - 1) x 2k = \(\frac{k(k + 1)(4k - 1)}{3}\).

For P(k + 1)

LHS = 1 x 2 + 3 x 4 + 5 x 6 + …. + (2k - 1) x 2k + (2(k + 1) - 1) x 2(k + 1)

= \(\frac{k(k + 1)(4k - 1)}{3}\) + (2(k + 1) - 1) x 2(k + 1)

= \(\frac{(k + 1)}{3}\)(4k2 - k + 12 k + 6)

= \(\frac{(k + 1) (4k^{2} + 8k + 3k + 6)}{3}\)

= \(\frac{(k + 1)(k + 2)(4k + 3)}{3}\)

= \(\frac{(k + 1)((k + 1) + 1)(4(k + 1) - 1)}{3}\) = RHS for P (k+1)

Now it is proved that P (k + 1) is also true for the equation.

So the given statement is true for all positive integers.



Problems on Principle of Mathematical Induction

3. Using the principle of mathematical induction, prove that

1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ..... + n(n + 1) = (1/3){n(n + 1)(n + 2)}.


Solution:

Let the given statement be P(n). Then,

P(n): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ..... + n(n + 1) = (1/3){n(n + 1)(n + 2)}.

Thus, the given statement is true for n = 1, i.e., P(1) is true.

Let P(k) be true. Then,

P(k): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ..... + k(k + 1) = (1/3){k(k + 1)(k + 2)}.

Now, 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 +...+ k(k + 1) + (k + 1)(k + 2)

          = (1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ....... + k(k + 1)) + (k + 1)(k + 2)

          = (1/3) k(k + 1)(k + 2) + (k + 1)(k + 2) [using (i)]

          = (1/3) [k(k + 1)(k + 2) + 3(k + 1)(k + 2)

          = (1/3){(k + 1)(k + 2)(k + 3)}

⇒ P(k + 1): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 +......+ (k + 1)(k + 2)

                     = (1/3){k + 1 )(k + 2)(k +3)}

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all values of ∈ N.



Problems on Principle of Mathematical Induction

4. By using mathematical induction prove that the given equation is true for all positive integers.

2 + 4 + 6 + …. + 2n = n(n+1)

Solution:

From the statement formula

When n = 1 or P (1),

LHS = 2

RHS =1 × 2 = 2

So P (1) is true.

Now we assume that P (k) is true or 2 + 4 + 6 + …. + 2k = k(k + 1).

For P(k + 1),

LHS = 2 + 4 + 6 + …. + 2k + 2(k + 1) 

= k(k + 1) + 2(k + 1) 

= (k + 1) (k + 2)

= (k + 1) ((k + 1) + 1) = RHS for P(k+1)

Now it is proved that P(k+1) is also true for the equation.

So the given statement is true for all positive integers.


5. Using the principle of mathematical induction, prove that

1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 +.....+ (2n - 1)(2n + 1) = (1/3){n(4n² + 6n - 1).


Solution:

Let the given statement be P(n). Then,

P(n): 1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 +...... + (2n - 1)(2n + 1)= (1/3)n(4n² + 6n - 1).

When n = 1, LHS = 1 ∙ 3 = 3 and RHS = (1/3) × 1 × (4 × 1² + 6 × 1 - 1)

                                                   = {(1/3) × 1 × 9} = 3.

LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): 1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + ….. + (2k - 1)(2k + 1) = (1/3){k(4k² + 6k - 1) ......(i)

Now,

1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + …….. + (2k - 1)(2k + 1) + {2k(k + 1) - 1}{2(k + 1) + 1}

          = {1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + ………… + (2k - 1)(2k + 1)} + (2k + 1)(2k + 3)

          = (1/3) k(4k² + 6k - 1) + (2k + 1)(2k + 3) [using (i)]

          = (1/3) [(4k³ + 6k² - k) + 3(4k² + 8k + 3)]

          = (1/3)(4k³ + 18k² + 23k + 9)

          = (1/3){(k + 1)(4k² + 14k + 9)}

          = (1/3)[k + 1){4k(k + 1) ² + 6(k + 1) - 1}]

⇒ P(k + 1): 1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + ..... + (2k + 1)(2k + 3)

           = (1/3)[(k + 1){4(k + 1)² + 6(k + 1) - 1)}]

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.



More Problems on Principle of Mathematical Induction

6. By using mathematical induction prove that the given equation is true for all positive integers.

2 + 6 + 10 + ….. + (4n - 2) = 2n2 

Solution:

From the statement formula

When n = 1 or P(1),

LHS = 2

RHS = 2 × 12 = 2

So P(1) is true.

Now we assume that P (k) is true or 2 + 6 + 10 + ….. + (4k - 2) = 2k2

For P (k + 1),

LHS = 2 + 6 + 10 + ….. + (4k - 2) + (4(k + 1) - 2)

= 2k2 + (4k + 4 - 2)

= 2k+ 4k + 2

= (k+1)2

= RHS for P(k+1)

Now it is proved that P(k+1) is also true for the equation.

So the given statement is true for all positive integers.


7. Using the principle of mathematical induction, prove that

1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{n(n + 1)} = n/(n + 1)


Solution:

Let the given statement be P(n). Then,

P(n): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{n(n + 1)} = n/(n + 1).

Putting n = 1 in the given statement, we get

LHS= 1/(1 ∙ 2) = and RHS = 1/(1 + 1) = 1/2.

LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{k(k + 1)} = k/(k + 1) ..…(i)

Now 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{k(k + 1)} + 1/{(k + 1)(k + 2)}

[1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{k(k + 1)}] + 1/{(k + 1)(k + 2)}

= k/(k + 1)+1/{ (k + 1)(k + 2)}.

{k(k + 2) + 1}/{(k + 1)²/[(k + 1)k + 2)] using …(ii)

= {k(k + 2) + 1}/{(k + 1)(k + 2}

= {(k + 1)² }/{(k + 1)(k + 2)}

= (k + 1)/(k + 2) = (k + 1)/(k + 1 + 1)

⇒ P(k + 1): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ……… + 1/{ k(k + 1)} + 1/{(k + 1)(k + 2)}

                    = (k + 1)/(k + 1 + 1)

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Problems on Principle of Mathematical Induction

8. Using the principle of mathematical induction, prove that

{1/(3 ∙ 5)} + {1/(5 ∙ 7)} + {1/(7 ∙ 9)} + ….... + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3)}.


Solution:

Let the given statement be P(n). Then,

P(n): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + ……. + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3).

Putting n = 1 in the given statement, we get

and LHS = 1/(3 ∙ 5) = 1/15 and RHS = 1/{3(2 × 1 + 3)} = 1/15.

LHS = RHS

Thus , P(1) is true.

Let P(k) be true. Then,

P(k): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + …….. + 1/{(2k + 1)(2k + 3)} = k/{3(2k + 3)} ….. (i)

Now, 1/(3 ∙ 5) + 1/(5 ∙ 7) + ..…… + 1/[(2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}2(k + 1) + 3

          = {1/(3 ∙ 5) + 1/(5 ∙ 7) + ……. + [1/(2k + 1)(2k + 3)]} + 1/{(2k + 3)(2k + 5)}

          = k/[3(2k + 3)] + 1/[2k + 3)(2k + 5)] [using (i)]

           = {k(2k + 5) + 3}/{3(2k + 3)(2k + 5)}

          = (2k² + 5k + 3)/[3(2k + 3)(2k + 5)]

          = {(k + 1)(2k + 3)}/{3(2k + 3)(2k + 5)}

           = (k + 1)/{3(2k + 5)}

          = (k + 1)/[3{2(k + 1) + 3}]

= P(k + 1): 1/(3 ∙ 5) + 1/(5 ∙ 7) + …….. + 1/[2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}{2(k + 1) + 3}]

                    = (k + 1)/{3{2(k + 1) + 3}]

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for n ∈ N.



Problems on Principle of Mathematical Induction
9. By induction prove that 3- 1 is divisible by 2 is true for all positive integers.

Solution:

When n = 1, P(1) = 31 - 1 = 2 which is divisible by 2.

So P(1) is true.

Now we assume that P(k) is true or 3k - 1 is divisible by 2.

When P(k + 1),

3k + 1 - 1= 3k x 3 - 1 = 3k x 3 - 3 + 2 = 3(3k - 1) + 2

As (3k - 1) and 2 both are divisible by 2, it is proved that divisible by 2 is true for all positive integers.


10. Using the principle of mathematical induction, prove that

1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + …….. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)} for all n ∈ N.


Solution:

Let P (n): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)} .

Putting n = 1 in the given statement, we get

LHS = 1/(1 ∙ 2 ∙ 3) = 1/6 and RHS = {1 × (1 + 3)}/[4 × (1 + 1)(1 + 2)] = ( 1 × 4)/(4 × 2 × 3) = 1/6.

Therefore LHS = RHS.

Thus, the given statement is true for n = 1, i.e., P(1) is true.

Let P(k) be true. Then,

P(k): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……... + 1/{k(k + 1)(k + 2)} = {k(k + 3)}/{4(k + 1)(k + 2)}. …….(i)

Now, 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………….. + 1/{k(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}

           = [1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………..…. + 1/{ k(k + 1)(k + 2}] + 1/{(k + 1)(k + 2)(k + 3)}

           = [{k(k + 3)}/{4(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}]
                                                            [using(i)]

           = {k(k + 3)² + 4}/{4(k + 1)(k + 2)(k + 3)}

           = (k³ + 6k² + 9k + 4)/{4(k + 1)(k + 2)(k + 3)}

           = {(k + 1)(k + 1)(k + 4)}/{4 (k + 1)(k + 2)(k + 3)}

           = {(k + 1)(k + 4)}/{4(k + 2)(k + 3)

⇒ P(k + 1): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……….….. + 1/{(k + 1)(k + 2)(k + 3)}

                    = {(k + 1)(k + 2)}/{4(k + 2)(k + 3)}

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.



Problems on Principle of Mathematical Induction

11. By induction prove that n- 3n + 4 is even and it is true for all positive integers.

Solution:

When n = 1, P (1) = 1 - 3 + 4 = 2 which is an even number.

So P (1) is true.

Now we assume that P (k) is true or k- 3k + 4 is an even number.

When P (k + 1),

(k + 1)- 3(k + 1) + 4

= k+ 2k + 1 - 3k + 3 + 4

= k- 3k + 4 + 2(k + 2)

As k- 3k + 4 and 2(k + 2) both are even, there sum also will be an even number.

So it is proved that n- 3n + 4 is even is true for all positive integers.


12. Using the Principle of mathematical induction, prove that

{1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... {1 - 1/(n + 1)} = 1/(n + 1) for all n ∈ N.


Solution:

Let the given statement be P(n). Then,

P(n): {1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... {1 - 1/(n + 1)} = 1/(n + 1).

When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.

Therefore LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): {1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... [1 - {1/(k + 1)}] = 1/(k + 1)

Now, [{1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... [1 - {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]

           = [1/(k + 1)] ∙ [{(k + 2 ) - 1}/(k + 2)}]

           = [1/(k + 1)] ∙ [(k + 1)/(k + 2)]

           = 1/(k + 2)

Therefore p(k + 1): [{1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... [1 - {1/(k + 1)}] = 1/(k + 2)

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Problems on Principle of Mathematical Induction

 Mathematical Induction





11 and 12 Grade Math 

From Problems on Principle of Mathematical Induction to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 19, 24 03:26 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  2. Definition of Decimal Numbers | Decimal Part | Decimal Point |Examples

    Jul 19, 24 11:13 AM

    Decimal Numbers
    Definition of decimal numbers: We have learnt that the decimals are an extension of our number system. We also know that decimals can be considered as fractions whose denominators are 10, 100, 1000

    Read More

  3. Addition and Subtraction of Fractions | Solved Examples | Worksheet

    Jul 19, 24 02:00 AM

    Addition and subtraction of fractions are discussed here with examples. To add or subtract two or more fractions, proceed as under: (i) Convert the mixed fractions (if any.) or natural numbers

    Read More

  4. Fractions in Descending Order |Arranging Fractions an Descending Order

    Jul 19, 24 02:00 AM

    We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First…

    Read More

  5. Fractions in Ascending Order | Arranging Fractions | Worksheet |Answer

    Jul 19, 24 01:59 AM

    Comparison Fractions
    We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we fi…

    Read More