Problems on Principle of Mathematical Induction

Solved Problems on Principle of Mathematical Induction are shown here to prove Mathematical Induction.

Problems on Principle of Mathematical Induction

1. Using the principle of mathematical induction, prove that 

1² + 2² + 3² + ..... + n² = (1/6){n(n + 1)(2n + 1} for all n ∈ N.
 

Solution: 

Let the given statement be P(n). Then, 

P(n): 1² + 2² + 3² + ..... +n² = (1/6){n(n + 1)(2n + 1)}. 

Putting n =1 in the given statement, we get 

LHS = 1² = 1 and RHS = (1/6) × 1 × 2 × (2 × 1 + 1) = 1. 

Therefore LHS = RHS. 

Thus, P(1) is true. 

Let P(k) be true. Then,

P(k): 1² + 2² + 3² + ..... + k² = (1/6){k(k + 1)(2k + 1)}.

Now, 1² + 2² + 3² + ......... + k² + (k + 1)²

                    = (1/6) {k(k + 1)(2k + 1) + (k + 1)²

                    = (1/6){(k + 1).(k(2k + 1)+6(k + 1))}

                    = (1/6){(k + 1)(2k² + 7k + 6})

                    = (1/6){(k + 1)(k + 2)(2k + 3)}

                    = 1/6{(k + 1)(k + 1 + 1)[2(k + 1) + 1]}

⇒ P(k + 1): 1² + 2² + 3² + ….. + k² + (k+1)²

                    = (1/6){(k + 1)(k + 1 + 1)[2(k + 1) + 1]}

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

2. By using mathematical induction prove that the given equation is true for all positive integers.

1 x 2 + 3 x 4 + 5 x 6 + …. + (2n - 1) x 2n = \(\frac{n (n + 1) (4n - 1)}{3}\)

Solution:

From the statement formula

When n = 1,

LHS =1 x 2 = 2

RHS = \(\frac{1(1 + 1) (4 x 1 - 1)}{3}\) = \(\frac{6}{3}\) = 2

Hence it is proved that P (1) is true for the equation.

Now we assume that P (k) is true or 1 x 2 + 3 x 4 + 5 x 6 + …. + (2k - 1) x 2k = \(\frac{k(k + 1)(4k - 1)}{3}\).

For P(k + 1)

LHS = 1 x 2 + 3 x 4 + 5 x 6 + …. + (2k - 1) x 2k + (2(k + 1) - 1) x 2(k + 1)

= \(\frac{k(k + 1)(4k - 1)}{3}\) + (2(k + 1) - 1) x 2(k + 1)

= \(\frac{(k + 1)}{3}\)(4k2 - k + 12 k + 6)

= \(\frac{(k + 1) (4k^{2} + 8k + 3k + 6)}{3}\)

= \(\frac{(k + 1)(k + 2)(4k + 3)}{3}\)

= \(\frac{(k + 1)((k + 1) + 1)(4(k + 1) - 1)}{3}\) = RHS for P (k+1)

Now it is proved that P (k + 1) is also true for the equation.

So the given statement is true for all positive integers.



Problems on Principle of Mathematical Induction

3. Using the principle of mathematical induction, prove that

1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ..... + n(n + 1) = (1/3){n(n + 1)(n + 2)}.


Solution:

Let the given statement be P(n). Then,

P(n): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ..... + n(n + 1) = (1/3){n(n + 1)(n + 2)}.

Thus, the given statement is true for n = 1, i.e., P(1) is true.

Let P(k) be true. Then,

P(k): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ..... + k(k + 1) = (1/3){k(k + 1)(k + 2)}.

Now, 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 +...+ k(k + 1) + (k + 1)(k + 2)

          = (1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ....... + k(k + 1)) + (k + 1)(k + 2)

          = (1/3) k(k + 1)(k + 2) + (k + 1)(k + 2) [using (i)]

          = (1/3) [k(k + 1)(k + 2) + 3(k + 1)(k + 2)

          = (1/3){(k + 1)(k + 2)(k + 3)}

⇒ P(k + 1): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 +......+ (k + 1)(k + 2)

                     = (1/3){k + 1 )(k + 2)(k +3)}

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all values of ∈ N.



Problems on Principle of Mathematical Induction

4. By using mathematical induction prove that the given equation is true for all positive integers.

2 + 4 + 6 + …. + 2n = n(n+1)

Solution:

From the statement formula

When n = 1 or P (1),

LHS = 2

RHS =1 × 2 = 2

So P (1) is true.

Now we assume that P (k) is true or 2 + 4 + 6 + …. + 2k = k(k + 1).

For P(k + 1),

LHS = 2 + 4 + 6 + …. + 2k + 2(k + 1) 

= k(k + 1) + 2(k + 1) 

= (k + 1) (k + 2)

= (k + 1) ((k + 1) + 1) = RHS for P(k+1)

Now it is proved that P(k+1) is also true for the equation.

So the given statement is true for all positive integers.


5. Using the principle of mathematical induction, prove that

1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 +.....+ (2n - 1)(2n + 1) = (1/3){n(4n² + 6n - 1).


Solution:

Let the given statement be P(n). Then,

P(n): 1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 +...... + (2n - 1)(2n + 1)= (1/3)n(4n² + 6n - 1).

When n = 1, LHS = 1 ∙ 3 = 3 and RHS = (1/3) × 1 × (4 × 1² + 6 × 1 - 1)

                                                   = {(1/3) × 1 × 9} = 3.

LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): 1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + ….. + (2k - 1)(2k + 1) = (1/3){k(4k² + 6k - 1) ......(i)

Now,

1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + …….. + (2k - 1)(2k + 1) + {2k(k + 1) - 1}{2(k + 1) + 1}

          = {1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + ………… + (2k - 1)(2k + 1)} + (2k + 1)(2k + 3)

          = (1/3) k(4k² + 6k - 1) + (2k + 1)(2k + 3) [using (i)]

          = (1/3) [(4k³ + 6k² - k) + 3(4k² + 8k + 3)]

          = (1/3)(4k³ + 18k² + 23k + 9)

          = (1/3){(k + 1)(4k² + 14k + 9)}

          = (1/3)[k + 1){4k(k + 1) ² + 6(k + 1) - 1}]

⇒ P(k + 1): 1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + ..... + (2k + 1)(2k + 3)

           = (1/3)[(k + 1){4(k + 1)² + 6(k + 1) - 1)}]

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.



More Problems on Principle of Mathematical Induction

6. By using mathematical induction prove that the given equation is true for all positive integers.

2 + 6 + 10 + ….. + (4n - 2) = 2n2 

Solution:

From the statement formula

When n = 1 or P(1),

LHS = 2

RHS = 2 × 12 = 2

So P(1) is true.

Now we assume that P (k) is true or 2 + 6 + 10 + ….. + (4k - 2) = 2k2

For P (k + 1),

LHS = 2 + 6 + 10 + ….. + (4k - 2) + (4(k + 1) - 2)

= 2k2 + (4k + 4 - 2)

= 2k+ 4k + 2

= (k+1)2

= RHS for P(k+1)

Now it is proved that P(k+1) is also true for the equation.

So the given statement is true for all positive integers.


7. Using the principle of mathematical induction, prove that

1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{n(n + 1)} = n/(n + 1)


Solution:

Let the given statement be P(n). Then,

P(n): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{n(n + 1)} = n/(n + 1).

Putting n = 1 in the given statement, we get

LHS= 1/(1 ∙ 2) = and RHS = 1/(1 + 1) = 1/2.

LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{k(k + 1)} = k/(k + 1) ..…(i)

Now 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{k(k + 1)} + 1/{(k + 1)(k + 2)}

[1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{k(k + 1)}] + 1/{(k + 1)(k + 2)}

= k/(k + 1)+1/{ (k + 1)(k + 2)}.

{k(k + 2) + 1}/{(k + 1)²/[(k + 1)k + 2)] using …(ii)

= {k(k + 2) + 1}/{(k + 1)(k + 2}

= {(k + 1)² }/{(k + 1)(k + 2)}

= (k + 1)/(k + 2) = (k + 1)/(k + 1 + 1)

⇒ P(k + 1): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ……… + 1/{ k(k + 1)} + 1/{(k + 1)(k + 2)}

                    = (k + 1)/(k + 1 + 1)

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Problems on Principle of Mathematical Induction

8. Using the principle of mathematical induction, prove that

{1/(3 ∙ 5)} + {1/(5 ∙ 7)} + {1/(7 ∙ 9)} + ….... + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3)}.


Solution:

Let the given statement be P(n). Then,

P(n): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + ……. + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3).

Putting n = 1 in the given statement, we get

and LHS = 1/(3 ∙ 5) = 1/15 and RHS = 1/{3(2 × 1 + 3)} = 1/15.

LHS = RHS

Thus , P(1) is true.

Let P(k) be true. Then,

P(k): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + …….. + 1/{(2k + 1)(2k + 3)} = k/{3(2k + 3)} ….. (i)

Now, 1/(3 ∙ 5) + 1/(5 ∙ 7) + ..…… + 1/[(2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}2(k + 1) + 3

          = {1/(3 ∙ 5) + 1/(5 ∙ 7) + ……. + [1/(2k + 1)(2k + 3)]} + 1/{(2k + 3)(2k + 5)}

          = k/[3(2k + 3)] + 1/[2k + 3)(2k + 5)] [using (i)]

           = {k(2k + 5) + 3}/{3(2k + 3)(2k + 5)}

          = (2k² + 5k + 3)/[3(2k + 3)(2k + 5)]

          = {(k + 1)(2k + 3)}/{3(2k + 3)(2k + 5)}

           = (k + 1)/{3(2k + 5)}

          = (k + 1)/[3{2(k + 1) + 3}]

= P(k + 1): 1/(3 ∙ 5) + 1/(5 ∙ 7) + …….. + 1/[2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}{2(k + 1) + 3}]

                    = (k + 1)/{3{2(k + 1) + 3}]

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for n ∈ N.



Problems on Principle of Mathematical Induction
9. By induction prove that 3- 1 is divisible by 2 is true for all positive integers.

Solution:

When n = 1, P(1) = 31 - 1 = 2 which is divisible by 2.

So P(1) is true.

Now we assume that P(k) is true or 3k - 1 is divisible by 2.

When P(k + 1),

3k + 1 - 1= 3k x 3 - 1 = 3k x 3 - 3 + 2 = 3(3k - 1) + 2

As (3k - 1) and 2 both are divisible by 2, it is proved that divisible by 2 is true for all positive integers.


10. Using the principle of mathematical induction, prove that

1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + …….. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)} for all n ∈ N.


Solution:

Let P (n): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)} .

Putting n = 1 in the given statement, we get

LHS = 1/(1 ∙ 2 ∙ 3) = 1/6 and RHS = {1 × (1 + 3)}/[4 × (1 + 1)(1 + 2)] = ( 1 × 4)/(4 × 2 × 3) = 1/6.

Therefore LHS = RHS.

Thus, the given statement is true for n = 1, i.e., P(1) is true.

Let P(k) be true. Then,

P(k): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……... + 1/{k(k + 1)(k + 2)} = {k(k + 3)}/{4(k + 1)(k + 2)}. …….(i)

Now, 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………….. + 1/{k(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}

           = [1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………..…. + 1/{ k(k + 1)(k + 2}] + 1/{(k + 1)(k + 2)(k + 3)}

           = [{k(k + 3)}/{4(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}]
                                                            [using(i)]

           = {k(k + 3)² + 4}/{4(k + 1)(k + 2)(k + 3)}

           = (k³ + 6k² + 9k + 4)/{4(k + 1)(k + 2)(k + 3)}

           = {(k + 1)(k + 1)(k + 4)}/{4 (k + 1)(k + 2)(k + 3)}

           = {(k + 1)(k + 4)}/{4(k + 2)(k + 3)

⇒ P(k + 1): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……….….. + 1/{(k + 1)(k + 2)(k + 3)}

                    = {(k + 1)(k + 2)}/{4(k + 2)(k + 3)}

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.



Problems on Principle of Mathematical Induction

11. By induction prove that n- 3n + 4 is even and it is true for all positive integers.

Solution:

When n = 1, P (1) = 1 - 3 + 4 = 2 which is an even number.

So P (1) is true.

Now we assume that P (k) is true or k- 3k + 4 is an even number.

When P (k + 1),

(k + 1)- 3(k + 1) + 4

= k+ 2k + 1 - 3k + 3 + 4

= k- 3k + 4 + 2(k + 2)

As k- 3k + 4 and 2(k + 2) both are even, there sum also will be an even number.

So it is proved that n- 3n + 4 is even is true for all positive integers.


12. Using the Principle of mathematical induction, prove that

{1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... {1 - 1/(n + 1)} = 1/(n + 1) for all n ∈ N.


Solution:

Let the given statement be P(n). Then,

P(n): {1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... {1 - 1/(n + 1)} = 1/(n + 1).

When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.

Therefore LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): {1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... [1 - {1/(k + 1)}] = 1/(k + 1)

Now, [{1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... [1 - {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]

           = [1/(k + 1)] ∙ [{(k + 2 ) - 1}/(k + 2)}]

           = [1/(k + 1)] ∙ [(k + 1)/(k + 2)]

           = 1/(k + 2)

Therefore p(k + 1): [{1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... [1 - {1/(k + 1)}] = 1/(k + 2)

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Problems on Principle of Mathematical Induction

 Mathematical Induction





11 and 12 Grade Math 

From Problems on Principle of Mathematical Induction to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More