Ordering Integers

In ordering integers we will learn how to order the integers on a number line.

All integers can be represented on a number line. The convention followed to compare two integers represented on the number line is similar to that followed for the whole numbers marked on the number line. So the integer occurring on the right is greater than that on the left and the integer on the left is smaller than that on its right.

Ordering Integers

An integer on a number line is always greater than every integer on its left. Thus, 3 is greater than 2, 2 > 1, 1 > 0, 0 > -1, -1 > -2 and so on.

Similarly, an integer on a number line is always lesser than every integer on its right. Thus, -3 is less than -2, -2 < -1, -1 < 0, 0 < 1, 1 < 2 and so on.

Thus, we have the following examples:

(i) 3 > 2, since 3 is to the right of 2

(ii) 2 > 0, since 2 is to the right of 0

(iii) 0 > -2, since 0 is to the right of -2

(iv) -1 > -2, since -1 is to the right of -2


Integers obey the same Rule of Whole Numbers in their Ordering:

Rule I: Every positive integer is greater than every negative integer.

i.e., Since every positive integer is to the right of every negative integer, therefore, every positive integer is greater than every negative integer.


Rule II: Zero is less than every positive integer and is greater than every negative integer.

i.e., Since zero is to the left of every positive integer, therefore, zero is smaller than every positive integer.

Again, since zero is to the right of every negative integer, therefore, zero is greater than every negative integer.


Rule III: The greater the number, the lesser is its opposite.

i.e., The farther a number is from zero on its right, the larger is its value

For Example:

8 is greater than 5, but -8 is less than -5; similarly, -9 > -15 or, 9 < 15 and so on


Rule IV: The lesser the number, the greater is its opposite.

i.e., The farther a number is from zero on its left, the smaller is its value.

For Example:

6 is less than 7, but -6 is greater than -7; similarly, -8 < -5 or 8 > 5 and so on.


Rule V: The greater a number is the smaller is its opposite.

In general, if x and y are two integers such that

x > y, then -x < - y , and if x < y, then -x > - y

For Example:

(i) 6 > 4 and -6 < -4

(ii) 18 > 13 and -18 < -13.


Note: The symbol (-) is used to denote a negative integer as well as for subtraction.

(i) The temperature at an Everest is -10°C. Here the symbol (-) indicates the negative integer (-10) and no subtraction is involved.

(ii) On the other hand, 23 - 7 indicates the subtraction of 7 from 23.


Solved examples on ordering integers:

1. Arrange the integers from greater to lesser:

(i) 9, -2, 3, 0, -5, -7, 7, -1

(ii) -11, 17, -2, 2, -6, -15, 0, 1

(iii) 12, -21, -18, 14, -5, -1, 1, 10


Solution:

1. (i) 9, 7, 3, 0, -1, -2, -5, -7

(ii) 17, 2, 1, 0, -2, -6, -11, -15

(iii) 14, 12, 10, 1, -1, -5, -18, -21


2. Arrange the following integers in decreasing order.

(i) -3, 12, 7, 0, -8, 6

(ii) 0, -9, -15, 15, 9, -6, - 18, 29

(iii) -25, 0, -1, 8, - 6, - 13, 24, 6

(iv) -706, 409, 170, 109, -75, -555


Solution:

2. (i) 12, 7, 6, 0, -3, -8

(ii) 29, 15, 9, 0, -6, -9, -15, -18

(iii) 24, 8, 6, 0, -1, -6, -13, -25

(iv) 409, 170, 109, -75, -555, -706


3. Arrange the integers from lesser to greater:

(i) 0, 4, -4, 9, -10, -7, 12, -13

(ii) -14, 7, -25, -17, 20, 5, -9, -3

(iii) -6, 4, -18, 21, 29, -8, -16, 19


Solution:

3. (i) -13, -10, -7, -4, 0, 4, 9, 12

(ii) -25, -17, -14, -9, -3, 5, 7, 20

(iii) -18, -16, -8, -6, 4, 19, 21, 29


4. Arrange the following integers in increasing order.

(i) -3, 8, 6, 0, -7, 10

(ii) -17, 0, 9, 6, 10, -5, 8, -7

(iii) 0, -8, 6, -19, 65, -3, 38

(iv) -805, 508, -170, 108, 170, -85, -515


Solution:

4. (i) -7, -3, 0, 6, 8, 10

(ii) -17, -7, -5, 0, 6, 8, 9, 10

(iii) -19, -8, -3, 0, 6, 38, 65

(iv) -805, -515, -170, -85, 108, 170, 508

You might like these




Numbers Page

6th Grade Page

From Ordering Integers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More