Solved Examples on Exponents

Here are some solved examples on exponents using the laws of exponents.

1. Evaluate the exponent:

(i) 5-3

(ii) (1/3)-4

(iii) (5/2)-3

(iv) (-2)-5

(v) (-3/4)-4

We have:

(i) 5-3 = 1/53 = 1/125

(ii) (1/3)-4 = (3/1)4 = 34 = 81

(iii) (5/2)-3 = (2/5)3 = 23/53 = 8/125

(iv) (-2)-5 = 1/(-2)-5 = 1/-25 = 1/-32 = -1/32

(v) (-3/4)-4 = (4/-3)4 = (-4/3)4 = (-4)4/34 = 44/34 = 256/81





2. Evaluate: (-2/7)-4 × (-5/7)2

Solution:

(-2/7)-4 × (-5/7)2

= (7/-2)4 × (-5/7)2

= (-7/2)4 × (-5/7)2 [Since, (7/-2) = (-7/2)]

= (-7)4/24 × (-5)2/72

= {74 × (-5)2}/{24 × 72 } [Since, (-7)4 = 74]

= {72 × (-5)2 }/24

= [49 × (-5) × (-5)]/16

= 1225/16



3. Evaluate: (-1/4)-3 × (-1/4)-2

Solution:


(-1/4)-3 × (-1/4)-2

= (4/-1)3 × (4/-1)2

= (-4)3 × (-4)2

= (-4)(3 + 2)

= (-4)5

= -45

= -1024.



4. Evaluate: {[(-3)/2]2}-3

Solution:


{[(-3)/2]2}-3

= (-3/2)2 × (-3)

= (-3/2)-6

= (2/-3)6

= (-2/3)6

= (-2)6/36

= 26/36

= 64/729



5. Simplify:

(i) (2-1 × 5-1)-1 ÷ 4-1

(ii) (4-1 + 8-1) ÷ (2/3)-1

Solution:

(i) (2-1 × 5-1)-1 ÷ 4-1

= (1/2 × 1/5)-1 ÷ (4/1)-1

= (1/10)-1 ÷ (1/4)

= 10/1 ÷ 1/4

= (10 ÷ 1/4)

= (10 × 4)

= 40.


(ii) (4-1 + 8-1) ÷ (2/3)-1

= (1/4 + 1/8) ÷ (3/2)

= (2 + 1)/8 ÷ 3/2

= (3/8 ÷ 3/2)

= (3/8 ÷ 2/3)

= 1/4




6. Simplify: (1/2)-2 + (1/3)-2 + (1/4)-2

Solution:


(1/2)-2 + (1/3)-2 + (1/4)-2

= (2/1)2 + (3/1)2 + (4/1)2

= (22 + 32 + 42)

= (4 + 9 + 16)

= 29.



7. By what number should (1/2)-1 be multiplied so that the product is (-5/4)-1?

Solution:


Let the required number be x. Then,

x × (1/2)-1 = (-5/4)-1

⇒ x × (2/1) = (4/-5)

⇒ 2x = -4/5

⇒ x = (1/2 × -4/5) = -2/5

Hence, the required number is -2/5.



8. By what number should (-3/2)-3 be divided so that the quotient is (9/4)-2?

Solution:


Let the required number be x. Then,

(-3/2)-3/x = (9/4)-2

⇒ (-2/3)3 = (4/9)2 × x

⇒ (-2)3/33 = 42/92 × x

⇒ -8/27 = 16/81 × x

⇒ x = {-8/27 × 81/16}

⇒ x = -3/2

Hence, the required number is -3/2



9. If a = (2/5)2 ÷ (9/5)0 find the value of a-3.

Solution:


a-3 = [(2/5)2 ÷ (9/5)0]-3

= [(2/5)2 ÷ 1]-3

= [(2/5)2]-3

= (2/5)-6

= (5/2)6



10. Find the value of n, when 3-7 ×32n + 3 = 311 ÷ 35

Solution:


32n + 3 = 311 ÷ 35/3-7

⇒ 32n + 3 = 311 - 5/3-7

⇒ 32n + 3 = 36/3-7

⇒ 32n + 3 = 36 - (-7)

⇒ 32n + 3 = 36 + 7

⇒ 32n + 3 = 313

Since the bases are same and equating the powers, we get 2n + 3 = 13

2n = 13 – 3

2n = 10

n = 10/2

Therefore, n = 5



11. Find the value of n, when (5/3)2n + 1 (5/3)5 = (5/3)n + 2

Solution:


(5/3)2n + 1 + 5 = (5/3)n + 2

= (5/3)2n + 6 = (5/3)n + 2

Since the bases are same and equating the powers, we get 2n + 6 = n + 2

2n – n = 2 – 6

=> n = -4



12. Find the value of n, when 3n = 243

Solution:


3n = 35

Since, the bases are same, so omitting the bases, and equating the powers we get, n = 5.



13. Find the value of n, when 271/n = 3

Solution:


(27) = 3n

⇒ (3)3 = 3n

Since, the bases are same and equating the powers, we get

⇒ n = 3



14. Find the value of n, when 3432/n = 49

Solution:


[(7)3]2/n = (7)2

⇒ (7)6/n = (7)2

⇒ 6/n = 2

Since, the bases are same and equating the powers, we get n = 6/2 = 3.


 Exponents

Exponents

Laws of Exponents

Rational Exponent

Integral Exponents of a Rational Numbers

Solved Examples on Exponents

Practice Test on Exponents


 Exponents - Worksheets

Worksheet on Exponents











8th Grade Math Practice

From Solved Examples on Exponents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.