# Worksheet on Simplifying Algebraic Fractions

Practice the simplification provided in the worksheet on simplifying algebraic fractions. The questions are based on simplifying the expressions by cancelling out the common factor from both the numerator and denominator and then simplify by adding or subtracting or multiplying if required.

1. Simplify by adding and subtracting algebraic fractions:

(i) $$\frac{p}{p - 2} - \frac{p^{2}}{p^{2} - 4}$$

(ii) $$\frac{3}{a - b} - \frac{1}{a + b} + \frac{4b}{a^{2} - b^{2}}$$

(iii) $$\frac{3}{m - 3} + \frac{5}{3m - 9}$$

(iv) $$\frac{z - 1}{2} + \frac{z + 3}{5} + \frac{z + 7}{10}$$

(v) $$\frac{2z - 1}{3} + \frac{z - 5}{6} + \frac{z - 4}{4}$$

(vi) $$\frac{5z - 1}{8} - \frac{3z - 2}{7} + \frac{z - 5}{4}$$

2. Simplify by multiplying and dividing algebraic fractions:

(i) $$\frac{x^{2} - 4a^{2}}{ax + 2a^{2}} \times \frac{2a}{x - 2a}$$

(ii) $$\frac{z^{2} - 25}{z^{2} - 4} \times \frac{z - 2}{z + 5}$$

(iii) $$\frac{u^{2} - 16}{u^{2} - 49} \times \frac{u + 7}{u + 4}$$

(iv) $$\frac{m^{2}n^{2} + 3mn}{4m^{2} - 1} \div \frac{mn + 3}{2m + 1}$$

(v) $$\frac{p^{2} - p - 12}{5p} \times \frac{p^{3} - p}{p^{2} - 9 }$$

(vi) $$\frac{a + b}{2a - 3} \times \frac{a - b}{2a + 3}$$

3. Simplify by cancelling algebraic fractions:

(i) $$\frac{k - m}{m} + \frac{k + m}{m} - \frac{k^{2} - m^{2}}{2km}$$

(ii) $$\frac{z + 2}{17z} - \frac{z - 5}{34z} + \frac{z + 2}{51z}$$

(iii) $$\frac{2x^{2} - y^{2}}{x^{2}} - \frac{y^{2} - z^{2}}{y^{2}} - \frac{z^{2} - x^{2}}{z^{2}}$$

(iv) $$\frac{(d + 1)^{3} - (d - 1)^{3}}{3d^{3} + d}$$

(v) $$\frac{1}{(1 - a)^{2}} + \frac{2}{1 - a^{2}} + \frac{1}{(1 + a)^{2}}$$

(vi) $$\frac{(m^{3} - 2m)^{2} - (m^{2} - 2)^{2}}{(m - 1)(m + 1)(m^{2} - 2)}$$

Answers for the worksheet on worksheet on simplifying algebraic fractions to its lowest terms are given below to check the exact answers of the above simplification.

1. (i) $$\frac{2p}{(p + 2) (p – 2)}$$

(ii) $$\frac{2(a + 4b)}{(a + b) (a – b)}$$

(iii) $$\frac{14}{3(m - 3}$$

(iv) $$\frac{4(z + 1)}{5}$$

(v) $$\frac{13(z – 2)}{12}$$

(vi) $$\frac{25z - 61}{56}$$

2. (i) 2

(ii) $$\frac{z - 5}{z + 2}$$

(iii) $$\frac{u - 4}{u - 7}$$

(iv) $$\frac{mn}{2m - 1}$$

(v) $$\frac{(p – 4) (p^{2} – 1)}{5(p – 3)}$$

(vi) $$\frac{a^{2} – b^{2}}{4a^{2} - 9}$$

3. (i) $$\frac{k^{2} + 3m^{2}}{2km}$$

(ii) $$\frac{5z + 31}{102z}$$

(iii) $$\frac{x^{4}y^{2} – y^{4}z^{2} + x^{2}z^{4} }{x^{2}y^{2}z^{2}}$$

(iv) $$\frac{2}{d}$$

(v) $$\frac{4}{(1 - a^{2})^{2}}$$

(vi) 1

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

Jul 12, 24 03:08 PM

The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

2. ### Worksheet on Fractions | Questions on Fractions | Representation | Ans

Jul 12, 24 02:11 PM

In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced

3. ### Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

Jul 12, 24 03:21 AM

There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

4. ### Conversion of Improper Fractions into Mixed Fractions |Solved Examples

Jul 12, 24 12:59 AM

To convert an improper fraction into a mixed number, divide the numerator of the given improper fraction by its denominator. The quotient will represent the whole number and the remainder so obtained…