Practice the questions given in the worksheet on algebraic fractions. The questions are based on reducing the algebraic fractions to its simplest term.
1. Reducing fractions to its lowest form:
(i) \(\frac{6a + 1}{2} + \frac{7a - 3}{3}\)
(ii) \(n - \frac{n - 1}{2} + \frac{n - 2}{6}\)
(iii) \(\frac{2b - 3}{5b} + \frac{3 - 2b}{15b}\)
(iv) \(\frac{5}{m - 2} + \frac{5}{m + 2}\)
(v) \(\frac{n - 3}{5n} + \frac{n^{2} - 9}{10n^{2}} - \frac{8 - n^{3}}{15n^{3}}\)
(vi) \(\frac{2}{pq} - \frac{3q^{2} - p^{2}}{pq^{3}} + \frac{pq + q^{2}}{p^{2}q^{2}}\)
2. Reduce the following expressions to its simplest form:
(i) \(\frac{x^{2} - 4a^{2}}{ax + 2a^{2}} \times \frac{2a}{x - 2a}\)
(ii) \(\frac{z^{2} - 121}{z^{2} - 4} \div \frac{z + 11}{z + 2}\)
(iii) \(\frac{14k^{2} - 7k}{12k^{3} + 24k^{2}} \div \frac{2k - 1}{k^{2} + 2k}\)
(iv) \(\frac{4m - 1}{3m^{2} - 9m} \div \frac{4m^{2} - m}{m - 3}\)
(v) \(\frac{c^{2} + 4c}{c^{2} + 4c + 3} \div \frac{c^{2} - 16}{c^{2} - 2c - 3}\)
(vi) \(\frac{a^{2} - 25}{9a^{2} - 16b^{2}} \times \frac{3a - 4b}{a^{2} - 5a}\)
3. Simplify algebraic fractions to its lowest terms:
(i) \(\frac{1 + z + z^{2}}{1 - z^{3}} + \frac{z - z^{2}}{(1 - z)^{3}}\)
(ii) \(\frac{2m - 7}{(m - 3)^{2}} - \frac{2(m + 2)}{m^{2} - 9}\)
(iii) \(\frac{2u - 3v}{uv} + \frac{3u - 2k}{ku} + \frac{5}{u}\)
(iv) \(\frac{1}{2k^{2} - \frac{1}{2}} + \frac{1}{(2k + 1)^{2}}\)
(v) \(\frac{1}{(6u - 2)} - \frac{1}{2(u - \frac{1}{3})} - \frac{1}{1 - 3u}\)
Answers for the worksheet on algebraic fractions to its simplest form are given below to check the exact answers of the above simplification.
Answers:
1. (i) \(\frac{32a - 3}{6}\)
(ii) \(\frac{4n + 1}{6}\)
(iii) \(\frac{4b - 6}{15b}\)
(iv) \(\frac{10m}{(m + 2) (m – 2)}\)
(v) \(\frac{11n^{3} – 18n^{2} – 27n - 16}{30n^{3}}\)
(vi) \(\frac{p^{3} + q^{3}}{p^{2}q^{3}}\)
2. (i) 2
(ii) \(\frac{z - 11}{z - 2}\)
(iii) \(\frac{7}{12}\)
(iv) \(\frac{1}{3m^{ 2}}\)
(v) \(\frac{c(c – 3)}{(c + 3) (c – 4)}\)
(vi) \(\frac{a + 5}{a(3a + 4b)}\)
3. (i) \(\frac{1}{(1 - z)^{2}}\)
(ii) \(\frac{m - 9}{(m^{2} – 9) (m - 3)}\)
(iii) \(\frac{3v + 2k}{kv}\)
(iv) \(\frac{6k + 1}{(2k + 1)^{2} (2k – 1)}\)
(v) 0
8th Grade Math Practice
From Worksheet on Algebraic Fractions to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Dec 13, 24 08:43 AM
Dec 13, 24 12:31 AM
Dec 12, 24 11:22 PM
Dec 12, 24 10:31 PM
Dec 09, 24 10:39 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.