Volume and Surface Area of Cube and Cuboid

Here we will learn how to solve the problems on Volume and Surface Area of Cube and Cuboid:

1. Two cubes of edge 14 cm each are joined end to end to form a cuboid. Find the volume and the total surface area of the cuboid.

Solution:

Volume and Surface Area of Cube and Cuboid

The volume of the cuboid = 2 × volume of one cube

                                     = 2 × 14\(^{3}\) cm\(^{3}\)

                                     = 5488 cm\(^{3}\)

The total surface area of the cuboid = 2(28 × 14 + 14 × 14 + 14 × 28) cm\(^{2}\)                                             

                                                    = 2(28 + 14 + 28) × 14 cm\(^{2}\)

                                                    = 2(2 × 14 + 1 × 14 + 2 × 14) × 14 cm\(^{2}\)

                                                    = 2(2 + 1 + 2) × 14 × 14 cm\(^{2}\)

                                                    = 2(5) × 14 × 14 cm\(^{2}\)

                                                    = 10× 14 × 14 cm\(^{2}\)

                                                    = 1960 cm\(^{2}\)


2. The dimensions of the base of a rectangular vessel are 60 cm × 45 cm. Its height is 20 cm. The vessel is half-filled with water. What should be the size of a solid iron cube which when dropped into the vessel will raise the water level up to the brim?

Solution:

Application Problems on Volume and Surface Area of Cube and Cuboid

The volume of the vessel = 60 × 45 × 20 cm\(^{3}\)          

                                     = 54000 cm(^{3}\)  

It is half-filled with water      

So, the volume of the empty portion of the vessel = \(\frac{1}{2}\) × 54000 cm\(^{3}\)                                                                       

                                                                        = 27000 cm\(^{3}\) 

The volume of the iron cube should be 27000 cm\(^{3}\) so that it displaces this amount of water and the water level comes up to the brim.

If the edge of the cube is x then,

x\(^{3}\) = 27000 cm\(^{3}\)                                            

⟹ x\(^{3}\) = (30)\(^{3}\) cm\(^{3}\)

⟹ x = 30 cm

Therefore, the edge of the iron cube = 30 cm

The size of the cube should be 30 cm × 30 cm × 30 cm.





9th Grade Math

From Volume and Surface Area of Cube and Cuboid to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 19, 24 03:26 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  2. Definition of Decimal Numbers | Decimal Part | Decimal Point |Examples

    Jul 19, 24 11:13 AM

    Decimal Numbers
    Definition of decimal numbers: We have learnt that the decimals are an extension of our number system. We also know that decimals can be considered as fractions whose denominators are 10, 100, 1000

    Read More

  3. Addition and Subtraction of Fractions | Solved Examples | Worksheet

    Jul 19, 24 02:00 AM

    Addition and subtraction of fractions are discussed here with examples. To add or subtract two or more fractions, proceed as under: (i) Convert the mixed fractions (if any.) or natural numbers

    Read More

  4. Fractions in Descending Order |Arranging Fractions an Descending Order

    Jul 19, 24 02:00 AM

    We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First…

    Read More

  5. Fractions in Ascending Order | Arranging Fractions | Worksheet |Answer

    Jul 19, 24 01:59 AM

    Comparison Fractions
    We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we fi…

    Read More