The Cube Roots of Unity

We will discuss here about the cube roots of unity and their properties.

Suppose let us assume that the cube root of 1 is z i.e., 1 = z.

Then, cubing both sides we get, z\(^{3}\) = 1

or, z\(^{3}\) - 1 = 0

or, (z - 1)(z\(^{2}\) + z + 1) = 0

Therefore, either z - 1 = 0 i.e., z = 1 or, z\(^{2}\) + z + 1 = 0

Therefore, z = \(\frac{-1\pm \sqrt{1^{2} - 4\cdot 1\cdot 1}}{2\cdot 1}\) = \(\frac{-1\pm \sqrt{- 3}}{2}\) = -\(\frac{1}{2}\) ± i\(\frac{√3}{2}\)

Therefore, the three cube roots of unity are

1, -\(\frac{1}{2}\) + i\(\frac{√3}{2}\) and -\(\frac{1}{2}\) - i\(\frac{√3}{2}\)

among them 1 is real number and the other two are conjugate complex numbers and they are also known as imaginary cube roots of unity.

Properties of the cube roots of unity:

Property I: Among the three cube roots of unity one of the cube roots is real and the other two are conjugate complex numbers.

The three cube roots of unity are 1, -\(\frac{1}{2}\) + i\(\frac{√3}{2}\) and -\(\frac{1}{2}\) - i\(\frac{√3}{2}\).

Hence, we conclude that from the cube roots of unity we get 1 is real and the other two i.e., \(\frac{1}{2}\) + i\(\frac{√3}{2}\) and -\(\frac{1}{2}\) - i\(\frac{√3}{2}\) are conjugate complex numbers.

 

Property II: Square of any one imaginary cube root of unity is equal to the other imaginary cube root of unity.

\((\frac{-1 + \sqrt{3}i}{2})^{2}\) = \(\frac{1}{4}\)[(- 1)^2 - 2 1 √3i + (√3i)\(^{2}\)]

               = \(\frac{1}{4}\)[1 - 2√3i - 3]

               = \(\frac{-1 - \sqrt{3}i}{2}\),

And \((\frac{-1 - \sqrt{3}i}{2})^{2}\) = \(\frac{1}{4}\)[(1^2 + 2 1 √3i + (√3i)\(^{2}\)]

                    = \(\frac{1}{4}\)[1 + 2√3 i - 3]

                    = \(\frac{-1 + \sqrt{3}i}{2}\),

Hence, we conclude that square of any cube root of unity is equal to the other.

Therefore, suppose ω\(^{2}\) is one imaginary cube root of unity then the other would be ω.

 

Property III: The product of the two imaginary cube roots is 1 or, the product of three cube roots of unity is 1.

Let us assume that, ω = \(\frac{-1 - \sqrt{3}i}{2}\); then, ω\(^{2}\) = \(\frac{-1 + \sqrt{3}i}{2}\)

Therefore, the product of the two imaginary or complex cube roots = ω ω\(^{2}\) = \(\frac{-1 - \sqrt{3}i}{2}\) × \(\frac{-1 + \sqrt{3}i}{2}\)

Or, ω\(^{3}\) = \(\frac{1}{4}\)[(-1)\(^{2}\) - (√3i)\(^{2}\)] = \(\frac{1}{4}\)[1 - 3i\(^{2}\)] = \(\frac{1}{4}\)[1 + 3] = \(\frac{1}{4}\) × 4 = 1.

Again, the cube roots of unity are 1, ω, ω\(^{2}\). So, product of cube roots of unity = 1 ω ω\(^{2}\) = ω\(^{3}\) = 1.

Therefore, product of the three cube roots of unity is 1.

 

Property IV: ω\(^{3}\) = 1

We know that ω is a root of the equation z\(^{3}\) - 1 = 0. Therefore, ω satisfies the equation z\(^{3}\) - 1 = 0. 

Consequently, ω\(^{3}\) - 1 = 0

or, ω = 1.

Note: Since ω\(^{3}\) = 1, hence, ω\(^{n}\) = ω\(^{m}\), where m is the least non-negative remainder obtained by dividing n by 3.


Property V: The sum of the three cube roots of unity is zero i.e., 1 + ω + ω\(^{2}\) = 0.

We know that, the sum of the three cube roots of unity = 1 + \(\frac{-1 - \sqrt{3}i}{2}\) + \(\frac{-1 + \sqrt{3}i}{2}\)

Or, 1 + ω + ω\(^{2}\) = 1 - \(\frac{1}{2}\) + \(\frac{√3}{2}\)i - \(\frac{1}{2}\) - \(\frac{√3}{2}\)i = 0.

Notes:

(i) The cube roots of 1 are 1, ω, ω\(^{2}\) where, ω = \(\frac{-1 - \sqrt{3}i}{2}\) or, \(\frac{-1 + \sqrt{3}i}{2}\)

(ii) 1 + ω + ω\(^{2}\) = 0 ⇒ 1 + ω = - ω\(^{2}\), 1 + ω\(^{2}\) = - ω and ω + ω\(^{2}\) = -1

(iii) ω\(^{4}\) = ω\(^{3}\) ω = 1 ω = ω;

ω\(^{5}\) = ω\(^{3}\) ω\(^{2}\) = 1 ω\(^{2}\) = ω\(^{2}\);

ω\(^{6}\) = (ω\(^{3}\))\(^{2}\) = (1)\(^{2}\) = 1.

In general, if n be a positive integer then,

ω\(^{3n}\) = (ω\(^{3}\))\(^{n}\) = 1\(^{n}\) = 1;

ω\(^{3n + 1}\) = ω\(^{3n}\) ω = 1 ω = ω;

ω\(^{3n + 2}\) = ω\(^{3n}\) ω\(^{2}\) = 1 ω\(^{2}\) = ω\(^{2}\).

 

Property VI: The reciprocal of each imaginary cube roots of unity is the other.

The imaginary cube roots of unity are ω and ω\(^{2}\), where ω = \(\frac{-1 + \sqrt{3}i}{2}\).

Therefore, ω ω\(^{2}\) = ω\(^{3}\) = 1

⇒ ω = \(\frac{1}{ω^{2}}\) and ω\(^{2}\) = \(\frac{1}{ω}\)

Hence, we conclude that the reciprocal of each imaginary cube roots of unity is the other.

 

Property VII: If ω and ω\(^{2}\) are the roots of the equation z\(^{2}\) + z + 1 = 0 then - ω and - ω\(^{2}\) are the roots of the equation  z\(^{2}\) - z + 1 = 0.

Property VIII: Cube roots of -1 are -1, - ω and - ω\(^{2}\).






11 and 12 Grade Math 

From The Cube Roots of Unity to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 17, 25 01:54 PM

    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 17, 25 01:17 PM

    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 17, 25 12:21 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Math Place Value | Place Value | Place Value Chart | Ones and Tens

    Apr 16, 25 03:10 PM

    0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are one-digit numbers. Numbers from 10 to 99 are two-digit numbers. Let us look at the digit 6 in the number 64. It is in the tens place of the number. 6 tens = 60 So…

    Read More

  5. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 16, 25 02:55 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More