The Cube Roots of Unity

We will discuss here about the cube roots of unity and their properties.

Suppose let us assume that the cube root of 1 is z i.e., 1 = z.

Then, cubing both sides we get, z\(^{3}\) = 1

or, z\(^{3}\) - 1 = 0

or, (z - 1)(z\(^{2}\) + z + 1) = 0

Therefore, either z - 1 = 0 i.e., z = 1 or, z\(^{2}\) + z + 1 = 0

Therefore, z = \(\frac{-1\pm \sqrt{1^{2} - 4\cdot 1\cdot 1}}{2\cdot 1}\) = \(\frac{-1\pm \sqrt{- 3}}{2}\) = -\(\frac{1}{2}\) ± i\(\frac{√3}{2}\)

Therefore, the three cube roots of unity are

1, -\(\frac{1}{2}\) + i\(\frac{√3}{2}\) and -\(\frac{1}{2}\) - i\(\frac{√3}{2}\)

among them 1 is real number and the other two are conjugate complex numbers and they are also known as imaginary cube roots of unity.

Properties of the cube roots of unity:

Property I: Among the three cube roots of unity one of the cube roots is real and the other two are conjugate complex numbers.

The three cube roots of unity are 1, -\(\frac{1}{2}\) + i\(\frac{√3}{2}\) and -\(\frac{1}{2}\) - i\(\frac{√3}{2}\).

Hence, we conclude that from the cube roots of unity we get 1 is real and the other two i.e., \(\frac{1}{2}\) + i\(\frac{√3}{2}\) and -\(\frac{1}{2}\) - i\(\frac{√3}{2}\) are conjugate complex numbers.

 

Property II: Square of any one imaginary cube root of unity is equal to the other imaginary cube root of unity.

\((\frac{-1 + \sqrt{3}i}{2})^{2}\) = \(\frac{1}{4}\)[(- 1)^2 - 2 1 √3i + (√3i)\(^{2}\)]

               = \(\frac{1}{4}\)[1 - 2√3i - 3]

               = \(\frac{-1 - \sqrt{3}i}{2}\),

And \((\frac{-1 - \sqrt{3}i}{2})^{2}\) = \(\frac{1}{4}\)[(1^2 + 2 1 √3i + (√3i)\(^{2}\)]

                    = \(\frac{1}{4}\)[1 + 2√3 i - 3]

                    = \(\frac{-1 + \sqrt{3}i}{2}\),

Hence, we conclude that square of any cube root of unity is equal to the other.

Therefore, suppose ω\(^{2}\) is one imaginary cube root of unity then the other would be ω.

 

Property III: The product of the two imaginary cube roots is 1 or, the product of three cube roots of unity is 1.

Let us assume that, ω = \(\frac{-1 - \sqrt{3}i}{2}\); then, ω\(^{2}\) = \(\frac{-1 + \sqrt{3}i}{2}\)

Therefore, the product of the two imaginary or complex cube roots = ω ω\(^{2}\) = \(\frac{-1 - \sqrt{3}i}{2}\) × \(\frac{-1 + \sqrt{3}i}{2}\)

Or, ω\(^{3}\) = \(\frac{1}{4}\)[(-1)\(^{2}\) - (√3i)\(^{2}\)] = \(\frac{1}{4}\)[1 - 3i\(^{2}\)] = \(\frac{1}{4}\)[1 + 3] = \(\frac{1}{4}\) × 4 = 1.

Again, the cube roots of unity are 1, ω, ω\(^{2}\). So, product of cube roots of unity = 1 ω ω\(^{2}\) = ω\(^{3}\) = 1.

Therefore, product of the three cube roots of unity is 1.

 

Property IV: ω\(^{3}\) = 1

We know that ω is a root of the equation z\(^{3}\) - 1 = 0. Therefore, ω satisfies the equation z\(^{3}\) - 1 = 0. 

Consequently, ω\(^{3}\) - 1 = 0

or, ω = 1.

Note: Since ω\(^{3}\) = 1, hence, ω\(^{n}\) = ω\(^{m}\), where m is the least non-negative remainder obtained by dividing n by 3.


Property V: The sum of the three cube roots of unity is zero i.e., 1 + ω + ω\(^{2}\) = 0.

We know that, the sum of the three cube roots of unity = 1 + \(\frac{-1 - \sqrt{3}i}{2}\) + \(\frac{-1 + \sqrt{3}i}{2}\)

Or, 1 + ω + ω\(^{2}\) = 1 - \(\frac{1}{2}\) + \(\frac{√3}{2}\)i - \(\frac{1}{2}\) - \(\frac{√3}{2}\)i = 0.

Notes:

(i) The cube roots of 1 are 1, ω, ω\(^{2}\) where, ω = \(\frac{-1 - \sqrt{3}i}{2}\) or, \(\frac{-1 + \sqrt{3}i}{2}\)

(ii) 1 + ω + ω\(^{2}\) = 0 ⇒ 1 + ω = - ω\(^{2}\), 1 + ω\(^{2}\) = - ω and ω + ω\(^{2}\) = -1

(iii) ω\(^{4}\) = ω\(^{3}\) ω = 1 ω = ω;

ω\(^{5}\) = ω\(^{3}\) ω\(^{2}\) = 1 ω\(^{2}\) = ω\(^{2}\);

ω\(^{6}\) = (ω\(^{3}\))\(^{2}\) = (1)\(^{2}\) = 1.

In general, if n be a positive integer then,

ω\(^{3n}\) = (ω\(^{3}\))\(^{n}\) = 1\(^{n}\) = 1;

ω\(^{3n + 1}\) = ω\(^{3n}\) ω = 1 ω = ω;

ω\(^{3n + 2}\) = ω\(^{3n}\) ω\(^{2}\) = 1 ω\(^{2}\) = ω\(^{2}\).

 

Property VI: The reciprocal of each imaginary cube roots of unity is the other.

The imaginary cube roots of unity are ω and ω\(^{2}\), where ω = \(\frac{-1 + \sqrt{3}i}{2}\).

Therefore, ω ω\(^{2}\) = ω\(^{3}\) = 1

⇒ ω = \(\frac{1}{ω^{2}}\) and ω\(^{2}\) = \(\frac{1}{ω}\)

Hence, we conclude that the reciprocal of each imaginary cube roots of unity is the other.

 

Property VII: If ω and ω\(^{2}\) are the roots of the equation z\(^{2}\) + z + 1 = 0 then - ω and - ω\(^{2}\) are the roots of the equation  z\(^{2}\) - z + 1 = 0.

Property VIII: Cube roots of -1 are -1, - ω and - ω\(^{2}\).






11 and 12 Grade Math 

From The Cube Roots of Unity to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More