Solving a Linear Inequation Algebraically

Method of Solving a linear inequation algebraically ax + b >, <, ≥, ≤ cx + d

To solve a given linear inequation means to find the value or values of the variable used in it.

Thus; (i) to solve the inequation 4x + 7 > 23 means to find the variable x.

(ii) to solve the inequation 12 – 5y ≤ 17 means to find the variable y and so on.


On the basis of the laws of the inequality, we have the following working rules:

I: Rule of transferring a positive term: If we transfer a positive term (the term in addition) from one side of an inequations to its other side, then the sign of the term becomes negative.

For example:

1. 3x + 5 > 9 ⟹ 3x > 9 - 5

2. 7x + 2 ≤ 29 ⟹ 7x ≤ 29 - 2

3. 14 ≥ 3x + 11 ⟹14 - 11 ≥ 3x and so on.

 

II: Rule of transferring a negative term: If we transfer a negative term (the term in subtraction) from one side of an inequations to its other side, then the sign of the term becomes positive.

For example:

1. 3x - 5 > 9 ⟹ 3x > 9 + 5

2. 7x - 2 ≤ 29 ⟹ 7x ≤ 29 + 2

3. 14 ≥ 3x - 11 ⟹14 + 11 ≥ 3x and so on.


III: Rule of multiplication/division by a positive number: If we multiply or divide by the same positive number to each term of an inequation then, the sign of inequality remains the same.

i.e., All terms on both sides of an inequality can be multiplied or divided by a positive number.

Case I: If k is positive and m < n

m < n ⟹ km < kn and \(\frac{m}{k}\) < \(\frac{n}{k}\),

m > n ⟹ km > kn and \(\frac{m}{k}\)> \(\frac{n}{k}\),

m ≤ n ⟹ km ≤ kn and \(\frac{m}{k}\) ≤ \(\frac{n}{k}\),

and m ≥ n ⟹ km ≥ kn and \(\frac{m}{k}\) ≥ \(\frac{n}{k}\).

Thus, x ≤ 10 ⟹ 5x ≤ 5 × 10

          x ≥ 7 ⟹ 20x ≥ 20 × 7

        x ≤ 17 ⟹ \(\frac{x}{2}\) ≤ \(\frac{17}{2}\) and so on.


IV: Rule of multiplication/division by a negative number: If we multiply or divide by the same negative number to each term of an inequation then, the sign of inequality reverse.

i.e., All terms on both sides of an inequality can be multiplied or divided by a negative number on reversing the inequality.

Case II: If k is negative and m < n

m < n ⟹ km > kn and \(\frac{m}{k}\) > \(\frac{n}{k}\),

m ≥ n ⟹ km ≤ kn and \(\frac{m}{k}\) ≤ \(\frac{n}{k}\)

Thus, x ≤ 10 ⟹ -5x ≥ -5 × 10

                x > 12 ⟹ -5x < -5 × 12

                x ≥ 7 ⟹ -20x ≤ -20 × 7

                x ≥ 17 ⟹ \(\frac{x}{-22}\) ≤ \(\frac{17}{-22}\) and so on.


V: If we change the sign of each term on both sides of an inequation, then the sign of inequality gets reversed.

For example:

1. - m> 10 ⟺ m < -10

2. 5t ≤ 19 ⟺ -5t ≥ -19

3. -9k < - 5 ⟺ 9k > 5 and sso on.


VI: If both the sides of an inequation are positive or both are negative, then on taking their reciprocals, the sign of inequality reverses.

That is, if m and n both are either positive or both are negative, then

(i) m > n ⟺ \(\frac{1}{m}\) < \(\frac{1}{n}\)

(ii) m ≤ n ⟺ \(\frac{1}{m}\) ≥ \(\frac{1}{n}\)

(iii) m ≥ n ⟺ \(\frac{1}{m}\) ≤ \(\frac{1}{n}\) and so on.


Using the above facts we take the following steps to solve linear equations ax + b > cx + d.

Step I: bring all terms containing the variable (unknown) x on one side and the constants on the other side by using rules I and II.

Step II: Put the inequation in the form px > q.

Step III: Divide both sides by p by using rule III and IV.







10th Grade Math

From Solving a Linear Inequation Algebraically to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More