Loading [MathJax]/jax/output/HTML-CSS/jax.js

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Solving a Linear Inequation Algebraically

Method of Solving a linear inequation algebraically ax + b >, <, ≥, ≤ cx + d

To solve a given linear inequation means to find the value or values of the variable used in it.

Thus; (i) to solve the inequation 4x + 7 > 23 means to find the variable x.

(ii) to solve the inequation 12 – 5y ≤ 17 means to find the variable y and so on.


On the basis of the laws of the inequality, we have the following working rules:

I: Rule of transferring a positive term: If we transfer a positive term (the term in addition) from one side of an inequations to its other side, then the sign of the term becomes negative.

For example:

1. 3x + 5 > 9 ⟹ 3x > 9 - 5

2. 7x + 2 ≤ 29 ⟹ 7x ≤ 29 - 2

3. 14 ≥ 3x + 11 ⟹14 - 11 ≥ 3x and so on.

 

II: Rule of transferring a negative term: If we transfer a negative term (the term in subtraction) from one side of an inequations to its other side, then the sign of the term becomes positive.

For example:

1. 3x - 5 > 9 ⟹ 3x > 9 + 5

2. 7x - 2 ≤ 29 ⟹ 7x ≤ 29 + 2

3. 14 ≥ 3x - 11 ⟹14 + 11 ≥ 3x and so on.


III: Rule of multiplication/division by a positive number: If we multiply or divide by the same positive number to each term of an inequation then, the sign of inequality remains the same.

i.e., All terms on both sides of an inequality can be multiplied or divided by a positive number.

Case I: If k is positive and m < n

m < n ⟹ km < kn and mk < nk,

m > n ⟹ km > kn and mk> nk,

m ≤ n ⟹ km ≤ kn and mknk,

and m ≥ n ⟹ km ≥ kn and mknk.

Thus, x ≤ 10 ⟹ 5x ≤ 5 × 10

          x ≥ 7 ⟹ 20x ≥ 20 × 7

        x ≤ 17 ⟹ x2172 and so on.


IV: Rule of multiplication/division by a negative number: If we multiply or divide by the same negative number to each term of an inequation then, the sign of inequality reverse.

i.e., All terms on both sides of an inequality can be multiplied or divided by a negative number on reversing the inequality.

Case II: If k is negative and m < n

m < n ⟹ km > kn and mk > nk,

m ≥ n ⟹ km ≤ kn and mknk

Thus, x ≤ 10 ⟹ -5x ≥ -5 × 10

                x > 12 ⟹ -5x < -5 × 12

                x ≥ 7 ⟹ -20x ≤ -20 × 7

                x ≥ 17 ⟹ x221722 and so on.


V: If we change the sign of each term on both sides of an inequation, then the sign of inequality gets reversed.

For example:

1. - m> 10 ⟺ m < -10

2. 5t ≤ 19 ⟺ -5t ≥ -19

3. -9k < - 5 ⟺ 9k > 5 and sso on.


VI: If both the sides of an inequation are positive or both are negative, then on taking their reciprocals, the sign of inequality reverses.

That is, if m and n both are either positive or both are negative, then

(i) m > n ⟺ 1m < 1n

(ii) m ≤ n ⟺ 1m1n

(iii) m ≥ n ⟺ 1m1n and so on.


Using the above facts we take the following steps to solve linear equations ax + b > cx + d.

Step I: bring all terms containing the variable (unknown) x on one side and the constants on the other side by using rules I and II.

Step II: Put the inequation in the form px > q.

Step III: Divide both sides by p by using rule III and IV.







10th Grade Math

From Solving a Linear Inequation Algebraically to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More