Solved Examples on the Basic Properties of Tangents

The solved examples on the basic properties of tangents will help us to understand how to solve different type problems on properties of triangle.

1. Two concentric circles have their centres at O. OM = 4 cm and ON = 5 cm. XY is a chord of the outer circle and a tangent to the inner circle at M. Find the length of XY.

Two Concentric Circles

Solution:

Radius OM ⊥ tangent XY. Therefore, OM bisects XY, as ⊥ from centre bisects a chord. So, XY = 2MY. OY = ON = 5 cm. In ∆OMY,

MY^2 = OY^2 – OM^2 = 5^2 cm^2 – 4^2 cm^2 = 25 cm^2 – 16 cm^2 = 9 cm^2.

Therefore, MY = 3 cm. Thus, XY = 6 cm.


2. In the given figure, OX and OY are two radii of the circle. If MX and MY are tangents to the circle at X and Y respectively, prove that ∠XOY and ∠XMY are supplementary angles.

Two Radii of the Circle

Solution:

Given: OX and OY are radii and MX and MY are tangents.

To prove: ∠XOY + ∠XMY = 180°.

Proof:

Statement

Reason

1. ∠OXM = 90°

1. A tangent is perpendicular to the radius drawn through the point of contact.

2. ∠OYM = 90°

2. As in 1.

3. ∠OXM + ∠XMY + ∠OYM + ∠XOY = 360°

⟹ 90° + ∠XMY + 90° + ∠XOY = 360°

⟹ ∠XMY + ∠XOY = 360° – 180°

⟹ ∠XOY + ∠XMY = 360° – 180°

3. The sum of the four angles of a quadrilateral is 360°.

From statements 1 and 2.


3. If a line XY touches a circle at P and MN is a chord of the circle then prove that ∠MPN > ∠MQN, where Q is any point on XY other than P.

Line Touches a Circle at A Point

Solution:

Given: MN is a chord of a circle and tyhe tangent at the point P is the line XY. Q is any other point on XY.

To prove: ∠MPN > ∠MQN.

Proof:

Statement

Reason

1. MQ will cut the circle at a point R. Join R to N.

1. XY is tangent at P and so all points of XY except P are outside the circle.

2. ∠MPN = ∠MRN.

2. Angles in the same segment are equal.

3. ∠MRN > ∠RQN

3. Exterior angle is greater than interior opposite angle in a triangle.

4. ∠MPN > ∠RQN = ∠MQN.

4. By statements 2 and 3.





10th Grade Math

From Solved Examples on the Basic Properties of Tangents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 25, 25 12:21 PM

    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  2. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  3. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  4. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More

  5. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More