Solved Examples on the Basic Properties of Tangents

The solved examples on the basic properties of tangents will help us to understand how to solve different type problems on properties of triangle.

1. Two concentric circles have their centres at O. OM = 4 cm and ON = 5 cm. XY is a chord of the outer circle and a tangent to the inner circle at M. Find the length of XY.

Two Concentric Circles


Radius OM ⊥ tangent XY. Therefore, OM bisects XY, as ⊥ from centre bisects a chord. So, XY = 2MY. OY = ON = 5 cm. In ∆OMY,

MY^2 = OY^2 – OM^2 = 5^2 cm^2 – 4^2 cm^2 = 25 cm^2 – 16 cm^2 = 9 cm^2.

Therefore, MY = 3 cm. Thus, XY = 6 cm.

2. In the given figure, OX and OY are two radii of the circle. If MX and MY are tangents to the circle at X and Y respectively, prove that ∠XOY and ∠XMY are supplementary angles.

Two Radii of the Circle


Given: OX and OY are radii and MX and MY are tangents.

To prove: ∠XOY + ∠XMY = 180°.




1. ∠OXM = 90°

1. A tangent is perpendicular to the radius drawn through the point of contact.

2. ∠OYM = 90°

2. As in 1.

3. ∠OXM + ∠XMY + ∠OYM + ∠XOY = 360°

⟹ 90° + ∠XMY + 90° + ∠XOY = 360°

⟹ ∠XMY + ∠XOY = 360° – 180°

⟹ ∠XOY + ∠XMY = 360° – 180°

3. The sum of the four angles of a quadrilateral is 360°.

From statements 1 and 2.

3. If a line XY touches a circle at P and MN is a chord of the circle then prove that ∠MPN > ∠MQN, where Q is any point on XY other than P.

Line Touches a Circle at A Point


Given: MN is a chord of a circle and tyhe tangent at the point P is the line XY. Q is any other point on XY.

To prove: ∠MPN > ∠MQN.




1. MQ will cut the circle at a point R. Join R to N.

1. XY is tangent at P and so all points of XY except P are outside the circle.

2. ∠MPN = ∠MRN.

2. Angles in the same segment are equal.

3. ∠MRN > ∠RQN

3. Exterior angle is greater than interior opposite angle in a triangle.

4. ∠MPN > ∠RQN = ∠MQN.

4. By statements 2 and 3.

10th Grade Math

From Solved Examples on the Basic Properties of Tangents to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

Recent Articles

  1. Relation between Diameter Radius and Circumference |Problems |Examples

    Apr 22, 24 05:19 PM

    Relation between Radius and Diameter of a Circle
    Relation between diameter radius and circumference are discussed here. Relation between Diameter and Radius: What is the relation between diameter and radius? Solution: Diameter of a circle is twice

    Read More

  2. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 22, 24 01:35 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  3. Preschool Math Activities | Colorful Preschool Worksheets | Lesson

    Apr 21, 24 10:57 AM

    Preschool Math Activities
    Preschool math activities are designed to help the preschoolers to recognize the numbers and the beginning of counting. We believe that young children learn through play and from engaging

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Apr 20, 24 05:39 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 20, 24 05:29 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More