Subscribe to our YouTube channel for the latest videos, updates, and tips.


Solved Examples on the Basic Properties of Tangents

The solved examples on the basic properties of tangents will help us to understand how to solve different type problems on properties of triangle.

1. Two concentric circles have their centres at O. OM = 4 cm and ON = 5 cm. XY is a chord of the outer circle and a tangent to the inner circle at M. Find the length of XY.

Two Concentric Circles

Solution:

Radius OM ⊥ tangent XY. Therefore, OM bisects XY, as ⊥ from centre bisects a chord. So, XY = 2MY. OY = ON = 5 cm. In ∆OMY,

MY^2 = OY^2 – OM^2 = 5^2 cm^2 – 4^2 cm^2 = 25 cm^2 – 16 cm^2 = 9 cm^2.

Therefore, MY = 3 cm. Thus, XY = 6 cm.


2. In the given figure, OX and OY are two radii of the circle. If MX and MY are tangents to the circle at X and Y respectively, prove that ∠XOY and ∠XMY are supplementary angles.

Two Radii of the Circle

Solution:

Given: OX and OY are radii and MX and MY are tangents.

To prove: ∠XOY + ∠XMY = 180°.

Proof:

Statement

Reason

1. ∠OXM = 90°

1. A tangent is perpendicular to the radius drawn through the point of contact.

2. ∠OYM = 90°

2. As in 1.

3. ∠OXM + ∠XMY + ∠OYM + ∠XOY = 360°

⟹ 90° + ∠XMY + 90° + ∠XOY = 360°

⟹ ∠XMY + ∠XOY = 360° – 180°

⟹ ∠XOY + ∠XMY = 360° – 180°

3. The sum of the four angles of a quadrilateral is 360°.

From statements 1 and 2.


3. If a line XY touches a circle at P and MN is a chord of the circle then prove that ∠MPN > ∠MQN, where Q is any point on XY other than P.

Line Touches a Circle at A Point

Solution:

Given: MN is a chord of a circle and tyhe tangent at the point P is the line XY. Q is any other point on XY.

To prove: ∠MPN > ∠MQN.

Proof:

Statement

Reason

1. MQ will cut the circle at a point R. Join R to N.

1. XY is tangent at P and so all points of XY except P are outside the circle.

2. ∠MPN = ∠MRN.

2. Angles in the same segment are equal.

3. ∠MRN > ∠RQN

3. Exterior angle is greater than interior opposite angle in a triangle.

4. ∠MPN > ∠RQN = ∠MQN.

4. By statements 2 and 3.





10th Grade Math

From Solved Examples on the Basic Properties of Tangents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More