Simplification of Algebraic Fractions

Here we will learn simplification of algebraic fractions to its lowest term.

1. Simplify the algebraic fraction:

\(\frac{8a^{2}b}{4a^{2}  +  6ab}\)

Solution:

\(\frac{8a^{2}b}{4a^{2}  +  6ab}\)

We see in the given fraction the numerator is monomial and the denominator is binomial, which can be factorized.

\(\frac{\not{2}\times 2\times 2\times \not{a}\times a\times b}{\not{2}\not{a}(2a  +  3b)}\)

We can see that ‘2’ and ‘a’ are the common factors in the numerator and denominator so, we cancel the common factor ‘2’ and ‘a' from the numerator and denominator.

= \(\frac{4ab}{(2a  +  3b)}\)

2. Reduce the algebraic fraction to its lowest term:

\(\frac{x^{2}  +  8x  +  12}{x^{2}  -  4}\)

Solution:

\(\frac{x^{2}  +  8x  +  12}{x^{2}  -  4}\)

Each of the numerator and denominator is polynomial, which can be factorized.

= \(\frac{x^{2}  +  6x  +  2x  +  12}{(x)^{2}  -  (2)^{2}}\)

 = \(\frac{x(x  +  6 )  +  2(x  +  6)}{(x  +  2)(x  -  2)}\)

= \(\frac{(x  +  2)(x  +  6)}{(x  +  2)(x  -  2)}\)

We observed that in the numerator and denominator (x + 2) is the common factor and there is no other common factor. Now, we cancel the common factor from the numerator and denominator.

= \(\frac{(x  +  6)}{(x  -  2)}\)


3. Reduce the algebraic fraction to its lowest form:

\(\frac{5x^{2}  -  45}{x^{2}  -  x  -  12}\)

Solution:

\(\frac{5x^{2}  -  45}{x^{2}  -  x  -  12}\)

Each of the numerator and denominator is polynomial, which can be factorized.

= \(\frac{5(x^{2}  -  9)}{x^{2}  -  4x  +  3x  -  12}\)

= \(\frac{5[(x)^{2}  -  (3)^{2}]}{x(x  -  4)  +  3(x  -  4)}\)

= \(\frac{5(x  +  3)(x  -  3)}{(x  +  3)(x  -  4)}\)

Here, in the numerator and denominator (x + 3) is the common factor and there is no other common factor. Now, we cancel the common factor from the numerator and denominator.

= \(\frac{5(x  -  3)}{(x  -  4)}\)


4. Simplify the algebraic fraction:

\(\frac{x^{4}  -  13x^{2}  +  36}{2x^{2}  +  10x  +  12}\)

Solution:

\(\frac{5x^{2}  -  45}{x^{2}  -  x  -  12}\)

Each of the numerator and denominator is polynomial, which can be factorized.

= \(\frac{x^{4}  -  9x^{2}  -  4x^{2}  +  36}{2(x^{2}  +  5x  +  6)}\)

= \(\frac{x^{2}(x^{2}  -  9)  -  4(x^{2}  -  9)}{2(x^{2}  +  2x  +  3x  +  6)}\)

= \(\frac{(x^{2}  -  4)(x^{2}  -  9)}{2[x(x  +  2)  +  3(x  +  2)]}\)

= \(\frac{(x^{2}  -  4)(x^{2}  -  9)}{2(x  +  2)(x  +  3)} [Since, a^{2}  -  b^{2} = (a  +  b)(a  -  b)]\)

= \(\frac{(x  +  2)(x  -  2)(x  +  3)(x  -  3)}{2(x  +  2)(x  +  3)}\)

Here, in the numerator and denominator (x + 2) and (x + 3) are the common factors and there is no other common factor. Now, we cancel the common factors from the numerator and denominator.

= \(\frac{(x  -  2)(x  -  3)(x  -  3)}{2}\)

5. Reduce the algebraic fraction to its lowest term:

\(\frac{x^{2}  +  5x  -  2}{2x^{2}  +  x  -  6} \div \frac{4x^{2}  -  9}{6x^{2}  +  7x  -  3}\)

Solution:

\(\frac{x^{2}  +  5x  -  2}{2x^{2}  +  x  -  6} \div \frac{4x^{2}  -  9}{6x^{2}  +  7x  -  3}\)

Each of the numerator and denominator of each fraction are polynomial, which can be factorized.

Now by factorizing each polynomial we get;

3x2 + 5x – 2 = 3x2 –x + 6x – 2

                 = 3(3x – 1) + 2(3x – 1)

                 = (x + 2)(3x – 1)

2x2 + x – 6 = 2x2 - 3x - 4x - 6

                = x(2x – 3) + 2(2x – 3)

                = (x + 2)(2x - 3)

4x2 – 9 = (2x)2 - (3)2

           = (2x + 3)(2x – 3)

6x2 + 7x – 3 = 6x2 – 2x + 9x – 3

                  = 2x(3x – 1) + 3(3x – 1)

                  = (2x + 3)(3x – 1)

Therefore, we have

\(\frac{(x  +  2)(3x  -  1)}{(x  +  2)(2x  -  3)} \div \frac{(2x  +  3)(2x  -  3)}{(2x  +  3)(3x  -  1)}\)

= \(\frac{(3x  -  1)}{(2x  -  3)} \times \frac{(2x  -  3)}{(3x  -  1)}\)

= \(\frac{(3x  -  1)^{2}}{(2x  -  3)^{2}}\)

= \(\frac{9x^{2}  -  6x  +  1}{4x^{2}  -  12x  +  9}\)

 

6. Reduce the algebraic fraction to its lowest form:

 \(\frac{1}{x^{2}  -  3x  +  2}  +  \frac{1}{x^{2}  -  5x  +  6}  +  \frac{1}{x^{2}  -  4x  +  3}\)

Solution:

\(\frac{1}{x^{2}  -  3x  +  2}  +  \frac{1}{x^{2}  -  5x  +  6}  +  \frac{1}{x^{2}  -  4x  +  3}\)

= \(\frac{1}{x^{2}  -  2x  -  x  +  2}  +  \frac{1}{x^{2}  -  3x  -  2x  +  6}  +  \frac{1}{x^{2}  -  x  -  3x  +  3}\)

= \(\frac{1}{x(x  -  2)  -  1(x  -  2)}  +  \frac{1}{x(x  -  3)  -  2(x  -  3)}  +  \frac{1}{x(x  -  1)  -  3(x  -  1)}\)

= \(\frac{1}{(x  -  2)(x  -  1)}  +  \frac{1}{(x  -  3)(x  -  2)}  +  \frac{1}{(x  -  1)(x  -  3)}\)

= \(\frac{1 \times (x  -  3)}{(x  -  2)(x  -  1)(x  -  3)}  +  \frac{1\times (x  -  1)}{(x  -  3)(x  -  2)(x  -  1)}  +  \frac{1\times (x  -   2)}{(x  -  1)(x  -  3)(x  -  2)}\)

= \(\frac{(x  -  3)}{(x  -  2)(x  -  1)(x  -  3)}  +  \frac{(x  -  1)}{(x  -  3)(x  -  2)(x  -  1)}  +  \frac{(x  -  2)}{(x  -  1)(x  -  3)(x  -  2)}\)

= \(\frac{(x  -  3)  +  (x  -  1)  +  (x  -  2)}{(x  -  1)(x  -  2)(x  -  3)}\)

= \(\frac{(3x  -  6)}{(x  -  1)(x  -  2)(x  -  3)}\)

= \(\frac{3(x  -  2)}{(x  -  1)(x  -  2)(x  -  3)}\)

= \(\frac{3}{(x  -  1)(x  -  3)}\)

 

7. Simplify the algebraic fraction:

\(\frac{3x}{x  -  2}  +  \frac{5x}{x^{2}  -  4}\)

Solution:

\(\frac{3x}{x  -  2}  +  \frac{5x}{x^{2}  -  4}\)

= \(\frac{3x}{x  -  2}  +  \frac{5x}{x^{2}  -  (2)^{2}}\)

= \(\frac{3x}{x  -  2}  +  \frac{5x}{(x  +  2)(x  -  2)}\)

= \(\frac{3x \times (x  +  2)}{(x  -  2)(x  +  2)}  +  \frac{5x}{(x  +  2)(x  -  2)}\)

= \(\frac{3x(x  +  2)  -  5x}{(x  -  2)(x  +  2)}\)

= \(\frac{3x^{2}  +  6x  -  5x}{(x  -  2)(x  +  2)}\)

= \(\frac{3x^{2}  +  x}{(x  -  2)(x  +  2)}\)

= \(\frac{x(3x  +  1)}{(x  -  2)(x  +  2)}\)






8th Grade Math Practice

From Simplification of Algebraic Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  2. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More

  3. Mental Math on Geometrical Shapes | Geometry Worksheets| Answer

    Apr 24, 24 03:35 PM

    In mental math on geometrical shapes we will solve different type of problems on simple closed curves, polygons, basic geometrical concepts, perpendicular lines, parallel lines, circle, terms relates…

    Read More

  4. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 24, 24 02:57 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  5. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 24, 24 12:38 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More