Simplification of Algebraic Fractions

Here we will learn simplification of algebraic fractions to its lowest term.

1. Simplify the algebraic fraction:

\(\frac{8a^{2}b}{4a^{2}  +  6ab}\)

Solution:

\(\frac{8a^{2}b}{4a^{2}  +  6ab}\)

We see in the given fraction the numerator is monomial and the denominator is binomial, which can be factorized.

\(\frac{\not{2}\times 2\times 2\times \not{a}\times a\times b}{\not{2}\not{a}(2a  +  3b)}\)

We can see that ‘2’ and ‘a’ are the common factors in the numerator and denominator so, we cancel the common factor ‘2’ and ‘a' from the numerator and denominator.

= \(\frac{4ab}{(2a  +  3b)}\)

2. Reduce the algebraic fraction to its lowest term:

\(\frac{x^{2}  +  8x  +  12}{x^{2}  -  4}\)

Solution:

\(\frac{x^{2}  +  8x  +  12}{x^{2}  -  4}\)

Each of the numerator and denominator is polynomial, which can be factorized.

= \(\frac{x^{2}  +  6x  +  2x  +  12}{(x)^{2}  -  (2)^{2}}\)

 = \(\frac{x(x  +  6 )  +  2(x  +  6)}{(x  +  2)(x  -  2)}\)

= \(\frac{(x  +  2)(x  +  6)}{(x  +  2)(x  -  2)}\)

We observed that in the numerator and denominator (x + 2) is the common factor and there is no other common factor. Now, we cancel the common factor from the numerator and denominator.

= \(\frac{(x  +  6)}{(x  -  2)}\)


3. Reduce the algebraic fraction to its lowest form:

\(\frac{5x^{2}  -  45}{x^{2}  -  x  -  12}\)

Solution:

\(\frac{5x^{2}  -  45}{x^{2}  -  x  -  12}\)

Each of the numerator and denominator is polynomial, which can be factorized.

= \(\frac{5(x^{2}  -  9)}{x^{2}  -  4x  +  3x  -  12}\)

= \(\frac{5[(x)^{2}  -  (3)^{2}]}{x(x  -  4)  +  3(x  -  4)}\)

= \(\frac{5(x  +  3)(x  -  3)}{(x  +  3)(x  -  4)}\)

Here, in the numerator and denominator (x + 3) is the common factor and there is no other common factor. Now, we cancel the common factor from the numerator and denominator.

= \(\frac{5(x  -  3)}{(x  -  4)}\)


4. Simplify the algebraic fraction:

\(\frac{x^{4}  -  13x^{2}  +  36}{2x^{2}  +  10x  +  12}\)

Solution:

\(\frac{5x^{2}  -  45}{x^{2}  -  x  -  12}\)

Each of the numerator and denominator is polynomial, which can be factorized.

= \(\frac{x^{4}  -  9x^{2}  -  4x^{2}  +  36}{2(x^{2}  +  5x  +  6)}\)

= \(\frac{x^{2}(x^{2}  -  9)  -  4(x^{2}  -  9)}{2(x^{2}  +  2x  +  3x  +  6)}\)

= \(\frac{(x^{2}  -  4)(x^{2}  -  9)}{2[x(x  +  2)  +  3(x  +  2)]}\)

= \(\frac{(x^{2}  -  4)(x^{2}  -  9)}{2(x  +  2)(x  +  3)} [Since, a^{2}  -  b^{2} = (a  +  b)(a  -  b)]\)

= \(\frac{(x  +  2)(x  -  2)(x  +  3)(x  -  3)}{2(x  +  2)(x  +  3)}\)

Here, in the numerator and denominator (x + 2) and (x + 3) are the common factors and there is no other common factor. Now, we cancel the common factors from the numerator and denominator.

= \(\frac{(x  -  2)(x  -  3)(x  -  3)}{2}\)

5. Reduce the algebraic fraction to its lowest term:

\(\frac{x^{2}  +  5x  -  2}{2x^{2}  +  x  -  6} \div \frac{4x^{2}  -  9}{6x^{2}  +  7x  -  3}\)

Solution:

\(\frac{x^{2}  +  5x  -  2}{2x^{2}  +  x  -  6} \div \frac{4x^{2}  -  9}{6x^{2}  +  7x  -  3}\)

Each of the numerator and denominator of each fraction are polynomial, which can be factorized.

Now by factorizing each polynomial we get;

3x2 + 5x – 2 = 3x2 –x + 6x – 2

                 = 3(3x – 1) + 2(3x – 1)

                 = (x + 2)(3x – 1)

2x2 + x – 6 = 2x2 - 3x - 4x - 6

                = x(2x – 3) + 2(2x – 3)

                = (x + 2)(2x - 3)

4x2 – 9 = (2x)2 - (3)2

           = (2x + 3)(2x – 3)

6x2 + 7x – 3 = 6x2 – 2x + 9x – 3

                  = 2x(3x – 1) + 3(3x – 1)

                  = (2x + 3)(3x – 1)

Therefore, we have

\(\frac{(x  +  2)(3x  -  1)}{(x  +  2)(2x  -  3)} \div \frac{(2x  +  3)(2x  -  3)}{(2x  +  3)(3x  -  1)}\)

= \(\frac{(3x  -  1)}{(2x  -  3)} \times \frac{(2x  -  3)}{(3x  -  1)}\)

= \(\frac{(3x  -  1)^{2}}{(2x  -  3)^{2}}\)

= \(\frac{9x^{2}  -  6x  +  1}{4x^{2}  -  12x  +  9}\)

 

6. Reduce the algebraic fraction to its lowest form:

 \(\frac{1}{x^{2}  -  3x  +  2}  +  \frac{1}{x^{2}  -  5x  +  6}  +  \frac{1}{x^{2}  -  4x  +  3}\)

Solution:

\(\frac{1}{x^{2}  -  3x  +  2}  +  \frac{1}{x^{2}  -  5x  +  6}  +  \frac{1}{x^{2}  -  4x  +  3}\)

= \(\frac{1}{x^{2}  -  2x  -  x  +  2}  +  \frac{1}{x^{2}  -  3x  -  2x  +  6}  +  \frac{1}{x^{2}  -  x  -  3x  +  3}\)

= \(\frac{1}{x(x  -  2)  -  1(x  -  2)}  +  \frac{1}{x(x  -  3)  -  2(x  -  3)}  +  \frac{1}{x(x  -  1)  -  3(x  -  1)}\)

= \(\frac{1}{(x  -  2)(x  -  1)}  +  \frac{1}{(x  -  3)(x  -  2)}  +  \frac{1}{(x  -  1)(x  -  3)}\)

= \(\frac{1 \times (x  -  3)}{(x  -  2)(x  -  1)(x  -  3)}  +  \frac{1\times (x  -  1)}{(x  -  3)(x  -  2)(x  -  1)}  +  \frac{1\times (x  -   2)}{(x  -  1)(x  -  3)(x  -  2)}\)

= \(\frac{(x  -  3)}{(x  -  2)(x  -  1)(x  -  3)}  +  \frac{(x  -  1)}{(x  -  3)(x  -  2)(x  -  1)}  +  \frac{(x  -  2)}{(x  -  1)(x  -  3)(x  -  2)}\)

= \(\frac{(x  -  3)  +  (x  -  1)  +  (x  -  2)}{(x  -  1)(x  -  2)(x  -  3)}\)

= \(\frac{(3x  -  6)}{(x  -  1)(x  -  2)(x  -  3)}\)

= \(\frac{3(x  -  2)}{(x  -  1)(x  -  2)(x  -  3)}\)

= \(\frac{3}{(x  -  1)(x  -  3)}\)

 

7. Simplify the algebraic fraction:

\(\frac{3x}{x  -  2}  +  \frac{5x}{x^{2}  -  4}\)

Solution:

\(\frac{3x}{x  -  2}  +  \frac{5x}{x^{2}  -  4}\)

= \(\frac{3x}{x  -  2}  +  \frac{5x}{x^{2}  -  (2)^{2}}\)

= \(\frac{3x}{x  -  2}  +  \frac{5x}{(x  +  2)(x  -  2)}\)

= \(\frac{3x \times (x  +  2)}{(x  -  2)(x  +  2)}  +  \frac{5x}{(x  +  2)(x  -  2)}\)

= \(\frac{3x(x  +  2)  -  5x}{(x  -  2)(x  +  2)}\)

= \(\frac{3x^{2}  +  6x  -  5x}{(x  -  2)(x  +  2)}\)

= \(\frac{3x^{2}  +  x}{(x  -  2)(x  +  2)}\)

= \(\frac{x(3x  +  1)}{(x  -  2)(x  +  2)}\)






8th Grade Math Practice

From Simplification of Algebraic Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 18, 24 02:59 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More

  2. Numbers | Notation | Numeration | Numeral | Estimation | Examples

    May 12, 24 06:28 PM

    Numbers are used for calculating and counting. These counting numbers 1, 2, 3, 4, 5, .......... are called natural numbers. In order to describe the number of elements in a collection with no objects

    Read More

  3. Face Value and Place Value|Difference Between Place Value & Face Value

    May 12, 24 06:23 PM

    Face Value and Place Value
    What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

    Read More

  4. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    May 12, 24 06:09 PM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  5. Worksheet on Bar Graphs | Bar Graphs or Column Graphs | Graphing Bar

    May 12, 24 04:59 PM

    Bar Graph Worksheet
    In math worksheet on bar graphs students can practice the questions on how to make and read bar graphs or column graphs. Test your knowledge by practicing this graphing worksheet where we will

    Read More