Simplification of (a ± b)(a\(^{2}\) ∓ ab + b\(^{2}\))

We will discuss here about the expansion of (a ± b)(a\(^{2}\) ∓ ab + b\(^{2}\)).

(a + b)(a\(^{2}\) - ab + b\(^{2}\)) = a(a\(^{2}\) - ab + b\(^{2}\)) + b(a\(^{2}\) - ab + b\(^{2}\))

                                = a\(^{3}\) - a\(^{2}\)b + ab\(^{2}\) + ba\(^{2}\) - ab\(^{2}\) + b\(^{3}\)

                                = a\(^{3}\) + b\(^{3}\).

(a - b)(a\(^{2}\) + ab + b\(^{2}\)) = a(a\(^{2}\) + ab + b\(^{2}\)) - b(a\(^{2}\) + ab + b\(^{2}\))

                                = a\(^{3}\) + a\(^{2}\)b + ab\(^{2}\) - ba\(^{2}\) - ab\(^{2}\) - b\(^{3}\)

                                = a\(^{3}\) - b\(^{3}\).

Problems on simplification of (a ± b)(a\(^{2}\) ∓ ab + b\(^{2}\))

1. Simplify: (2x + y)(4x\(^{2}\) – 2xy + y\(^{2}\))

Solution:

(2x + y)(4x\(^{2}\) – 2xy + y\(^{2}\))

= (2x + y){(2x)\(^{2}\) – (2x)y + y\(^{2}\)}

= (2x)\(^{3}\) + y\(^{3}\), [Since, (a + b)(a\(^{2}\) - ab + b\(^{2}\)) = a\(^{3}\) + b\(^{3}\)].

= 8x\(^{3}\) + y\(^{3}\).

 

2. Simplify: (x - \(\frac{1}{x}\))(x\(^{2}\) + 1 + \(\frac{1}{x^{2}}\)}

Solution:

(x - \(\frac{1}{x}\))(x\(^{2}\) + 1 + \(\frac{1}{x^{2}}\)}

= (x - \(\frac{1}{x}\)){x\(^{2}\) + x ∙ \(\frac{1}{x}\) + (\(\frac{1}{x}\))\(^{2}\)}

= x\(^{3}\) - \(\frac{1}{x^{3}}\), [Since, (a - b)(a\(^{2}\) + ab + b\(^{2}\)) = a\(^{3}\) - b\(^{3}\)].






9th Grade Math

From Simplification of (a ± b)(a^2 ∓ ab + b^2) to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?