Subscribe to our YouTube channel for the latest videos, updates, and tips.
We will discuss here about the expansion of (a ± b)(a2 ∓ ab + b2).
(a + b)(a2 - ab + b2) = a(a2 - ab + b2) + b(a2 - ab + b2)
= a3 - a2b + ab2 + ba2 - ab2 + b3
= a3 + b3.
(a - b)(a2 + ab + b2) = a(a2 + ab + b2) - b(a2 + ab + b2)
= a3 + a2b + ab2 - ba2 - ab2 - b3
= a3 - b3.
Problems on simplification of (a ± b)(a2 ∓ ab + b2)
1. Simplify: (2x + y)(4x2 – 2xy + y2)
Solution:
(2x + y)(4x2 – 2xy + y2)
= (2x + y){(2x)2 – (2x)y + y2}
= (2x)3 + y3, [Since, (a + b)(a2 - ab + b2) = a3 + b3].
= 8x3 + y3.
2. Simplify: (x - 1x)(x2 + 1 + 1x2}
Solution:
(x - 1x)(x2 + 1 + 1x2}
= (x - 1x){x2 + x ∙ 1x + (1x)2}
= x3 - 1x3, [Since, (a - b)(a2 + ab + b2) = a3 - b3].
From Simplification of (a ± b)(a^2 ∓ ab + b^2) to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
May 18, 25 04:33 PM
May 17, 25 05:37 PM
May 17, 25 04:04 PM
May 17, 25 03:47 PM
May 16, 25 11:13 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.