We will discuss here about the expansion of (a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca).
(a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca)
= a(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca) + b(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca) + c(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca)
= a\(^{3}\) + ab\(^{2}\) + ac\(^{2}\) - a\(^{2}\)b – abc - ca\(^{2}\) +ba\(^{2}\) + b\(^{3}\) + bc\(^{2}\) - ab\(^{2}\) – bc – bca + ca\(^{2}\) + cb\(^{2}\) + c\(^{3}\) – cab - bc\(^{2}\) - c\(^{2}\)a
= a\(^{3}\) + b\(^{3}\) + c\(^{3}\) – 3abc.
Solved Example on Simplification of (a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca)
1. Simplify: (x + 2y + 3z)(x\(^{2}\) + 4y\(^{2}\) + 9z\(^{2}\) – 2xy – 6yz – 3zx)
Solution:
We know, (a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca) = a\(^{3}\) + b\(^{3}\) + c\(^{3}\) – 3abc.
Therefore, the given expression = (x + 2y + 3z){(x)\(^{2}\) + (2y)\(^{2}\) + (3z)\(^{2}\) – (x)(2y) – (2y)(3z) – (3z)(x)}
= x\(^{3}\) + (2y) \(^{3}\) + (3z)\(^{3}\) – 3 ∙ x ∙ 2y ∙ 3z
= x\(^{3}\) + 8y\(^{3}\) + 27z\(^{3}\) – 18xyz.
Problem on simplification of (a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca)
1. (x + y + 2z)(x\(^{2}\) + y\(^{2}\) + 4z\(^{2}\) - xy - 2yz - 2zx)
2. (3a + 2b - c)(9a\(^{2}\) + 4b\(^{2}\) + c\(^{2}\) - 6ab + 2b + 3ca)
Answer:
1. x\(^{3}\) + y\(^{3}\) + 8z\(^{3}\) - 6xyz
2. 27a\(^{3}\) + 8b\(^{3}\) - c\(^{3}\) + 18abc
From Simplification of (a + b + c)(a\(^{2}\)+b\(^{2}\)+c\(^{2}\)–ab–bc– ca) to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Dec 03, 24 01:29 AM
Dec 03, 24 01:19 AM
Dec 02, 24 01:47 PM
Dec 02, 24 01:26 PM
Nov 29, 24 01:26 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.