We will discuss here about the expansion of (a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca).
(a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca)
= a(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca) + b(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca) + c(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca)
= a\(^{3}\) + ab\(^{2}\) + ac\(^{2}\) - a\(^{2}\)b – abc - ca\(^{2}\) +ba\(^{2}\) + b\(^{3}\) + bc\(^{2}\) - ab\(^{2}\) – bc – bca + ca\(^{2}\) + cb\(^{2}\) + c\(^{3}\) – cab - bc\(^{2}\) - c\(^{2}\)a
= a\(^{3}\) + b\(^{3}\) + c\(^{3}\) – 3abc.
Solved Example on Simplification of (a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca)
1. Simplify: (x + 2y + 3z)(x\(^{2}\) + 4y\(^{2}\) + 9z\(^{2}\) – 2xy – 6yz – 3zx)
Solution:
We know, (a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca) = a\(^{3}\) + b\(^{3}\) + c\(^{3}\) – 3abc.
Therefore, the given expression = (x + 2y + 3z){(x)\(^{2}\) + (2y)\(^{2}\) + (3z)\(^{2}\) – (x)(2y) – (2y)(3z) – (3z)(x)}
= x\(^{3}\) + (2y) \(^{3}\) + (3z)\(^{3}\) – 3 ∙ x ∙ 2y ∙ 3z
= x\(^{3}\) + 8y\(^{3}\) + 27z\(^{3}\) – 18xyz.
Problem on simplification of (a + b + c)(a\(^{2}\) + b\(^{2}\) + c\(^{2}\) – ab – bc – ca)
1. (x + y + 2z)(x\(^{2}\) + y\(^{2}\) + 4z\(^{2}\) - xy - 2yz - 2zx)
2. (3a + 2b - c)(9a\(^{2}\) + 4b\(^{2}\) + c\(^{2}\) - 6ab + 2b + 3ca)
Answer:
1. x\(^{3}\) + y\(^{3}\) + 8z\(^{3}\) - 6xyz
2. 27a\(^{3}\) + 8b\(^{3}\) - c\(^{3}\) + 18abc
From Simplification of (a + b + c)(a\(^{2}\)+b\(^{2}\)+c\(^{2}\)–ab–bc– ca) to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Dec 14, 24 02:12 PM
Dec 14, 24 12:25 PM
Dec 13, 24 08:43 AM
Dec 13, 24 12:31 AM
Dec 12, 24 11:22 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.