Representation of the Solution Set of an Inequation


Graphical representation of the solution set of an inequation:

A number line is used to represent the solution set of an inequation graphically.

First solve the linear inequation and find the solution set.

Mark it on the number line by putting a dot.

In case the solution set is infinite, then put three more dots to indicate infiniteness.


For Example: 

1. Solve the inequation 3x - 5 < 4, x ∈ N and represent the solution set graphically. 

Solution:

We have 3x - 5 < 4

⇒ 3x - 5 + 5 < 4 + 5 (Add 5 to both sides)

⇒ 3x < 9

⇒ 3x/3 < 9/3 (Divide both sides by 3)

⇒ x < 3

So, the replacement set = {1, 2, 3, 4, 5, ...}

Therefore, the solution set = {1, 2} or S = {x : x ∈ N, x < 3}

Let us mark the solution set graphically.

representation of the solution set of an inequation


Solution set is marked on the number line by dots. 



2. Solve 2x + 8 ≥ 18 


Here x ∈. W represent the inequation graphically

⇒ 2x + 8 - 8 ≥ 18 - 8 (Subtract 8 from both sides)

⇒ 2x ≥ 10

⇒ 2x/2 ≥ 10/2 (Divide both sides by 2)

⇒ x ≥ 5

Replacement set = {0, 1, 2, 3, 4, 5, 6, ...}

Therefore, solution set = {5, 6, 7, 8, 9, ...}

or, S = {x : x ∈ W, x ≥ 5}

Let us mark the solution set graphically.

inequation graphically


Solution set is marked on the number line by dots. We put three more dots indicate infiniteness of the solution set.


3. Solve -3 ≤ x ≤ 4, x ∈ I

Solution:

This contains two inequations,

-3 ≤ x and x ≤ 4

Replacement set = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...}

Solution set for the inequation -3 ≤ x is -3, -2, -1, 0, 1, 2, ... i.e., S = {-3, -2, -1, 0, 1, 2, 3, ...} = P

And the solution set for the inequation x ≤ 4 is 4, 3, 2, 1, 0, -1, ... i.e., S = {..., -3, -2, -1, 0, 1, 2, 3, 4} = Q

Therefore, solution set of the given inequation = P ∩ Q

                          = {-3, -2, -1, 0, 1, 2, 3, 4}

or S = {x : x ∈ I, -3 ≤ x ≤ 4}

Let us represent the solution set graphically.

solution set graphically



Solution set is marked on the number line by dots.

A number line is used for representation of the solution set of an inequation.

Now, solution set S = {3, 4, 5, 6, ...} S = (x : x ∈ N, x > 3)

For Example:

4. 2x + 3 ≤ 15

⇒ 2x + 3 - 3 ≤ 15 - 3 (Subtract 3 from both sides)

⇒ 2x ≤ 12 ⇒ 2x/2 ≤ 12/2 (Divide both sides by 2)

⇒ x ≤ 6

Now, the solution set S = {1, 2, 3, 4, 5}   S' = {x : x ∈ N, x < 6}

Now, S ∩ S’ = {3, 4, 5, 6}

5. 0 < 4x - 9 ≤ 5,     x ∈ R

Solution:

Case I: 0 ≤ 4x - 9

0 + 9 ≤ 4x - 9 + 9

⇒ 9 ≤ 4x

⇒ 9/4 ≤ 4x/4

⇒ 2.25 ≤ x

⇒ 2.2 < x


Case II: 4x - 3 ≤ 9

⇒ 4x - 3 + 3 ≤ 9 + 3

⇒ 4x ≤ 12

⇒ x ≤ 3

S ∩ S' = {2.2 < x ≤ 3} x ∈ R

           = {x : x ∈ R 3 ≥ x > 2.2}

solution set of an inequation



Arrow on right shows that solution set continues.



 Inequations

What are Linear Inequality?

What are Linear Inequations?

Properties of Inequation or Inequalities

Representation of the Solution Set of an Inequation

Practice Test on Linear Inequation


 Inequations - Worksheets

Worksheet on Linear Inequations












7th Grade Math Problems

8th Grade Math Practice 

From Representation of the Solution Set of an Inequation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More