Properties of Proportion

We will learn about the properties of proportion. We know that a proportion is an expression which states that the two ratios are in equal.

In general, four numbers are said to be in proportion, if the ratio of the first two quantities is equal to the ratio of the last two. In general, the symbol for representing a proportion is “: :

(i) The numbers a, b, c and d are in proportional if the ratio of the first two quantities is equal to the ratio of the last two quantities, i.e., a : b : : c : d and is read as ‘a is to b is as c is to d’. The symbol ‘ : : ‘ stands for ‘is as’.

(ii) Each quantity in a proportion is called its term or its proportional.

(iii) In a proportion; the first and the last terms are called the extremes; whereas the second and the third terms are called the means.

If four numbers a, b, c and d are in proportional (i.e., a : b : : c : d), then a and d are known as extreme terms and b and c are called middle terms.

(v) The fourth term of a proportion is called fourth proportional.

(vi) For every proportion, the product of the extremes is always equal to the product of the means, i.e., a : b : : c : d if and only if ad = bc.

For example; in proportion 3 : 4 : : 9 : 12;

Product of extremes = 3 × 12 = 36 and product of means = 4 × 9 = 36

(vii) From the terms of a given proportion, we can make three more proportions.

(viii) If x : y = y : z, then x, y, z are said to be continued proportion.

(ix) If x, y, z are in continued proportion, (i.e., x : y : : y : z), then y is the mean proportional between x and z.

(x) If x, y, z are in continued proportion, (i.e., x : y : : y : z), then the third quantity is called the third proportional to the first and second i.e., z is the third proportional to x and y.


Properties of proportion will help us to solve different types of problems on ratio and proportion.

Solved Example:

Find the fourth proportional of 3, 4 and 18.

Solution:

Let the fourth proportional be x.

Therefore, 3 : 4 = 18 : x

⇒ 3 × x = 4 × 18; from the above property (vi) we know product of extremes = product of means

⇒ 3x = 72

⇒ x = 72/3

⇒ x = 24







6th Grade Page

From Properties of Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Successor and Predecessor | Successor of a Whole Number | Predecessor

    Jul 29, 25 12:59 AM

    Successor and Predecessor
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  2. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 28, 25 01:52 PM

    Volume of a Cuboids
    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  3. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  4. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  5. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More