Subscribe to our YouTube channel for the latest videos, updates, and tips.


Properties of Proportion

We will learn about the properties of proportion. We know that a proportion is an expression which states that the two ratios are in equal.

In general, four numbers are said to be in proportion, if the ratio of the first two quantities is equal to the ratio of the last two. In general, the symbol for representing a proportion is “: :

(i) The numbers a, b, c and d are in proportional if the ratio of the first two quantities is equal to the ratio of the last two quantities, i.e., a : b : : c : d and is read as ‘a is to b is as c is to d’. The symbol ‘ : : ‘ stands for ‘is as’.

(ii) Each quantity in a proportion is called its term or its proportional.

(iii) In a proportion; the first and the last terms are called the extremes; whereas the second and the third terms are called the means.

If four numbers a, b, c and d are in proportional (i.e., a : b : : c : d), then a and d are known as extreme terms and b and c are called middle terms.

(v) The fourth term of a proportion is called fourth proportional.

(vi) For every proportion, the product of the extremes is always equal to the product of the means, i.e., a : b : : c : d if and only if ad = bc.

For example; in proportion 3 : 4 : : 9 : 12;

Product of extremes = 3 × 12 = 36 and product of means = 4 × 9 = 36

(vii) From the terms of a given proportion, we can make three more proportions.

(viii) If x : y = y : z, then x, y, z are said to be continued proportion.

(ix) If x, y, z are in continued proportion, (i.e., x : y : : y : z), then y is the mean proportional between x and z.

(x) If x, y, z are in continued proportion, (i.e., x : y : : y : z), then the third quantity is called the third proportional to the first and second i.e., z is the third proportional to x and y.


Properties of proportion will help us to solve different types of problems on ratio and proportion.

Solved Example:

Find the fourth proportional of 3, 4 and 18.

Solution:

Let the fourth proportional be x.

Therefore, 3 : 4 = 18 : x

⇒ 3 × x = 4 × 18; from the above property (vi) we know product of extremes = product of means

⇒ 3x = 72

⇒ x = 72/3

⇒ x = 24







6th Grade Page

From Properties of Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More