Properties of Proportion

We will learn about the properties of proportion. We know that a proportion is an expression which states that the two ratios are in equal.

In general, four numbers are said to be in proportion, if the ratio of the first two quantities is equal to the ratio of the last two. In general, the symbol for representing a proportion is “: :

(i) The numbers a, b, c and d are in proportional if the ratio of the first two quantities is equal to the ratio of the last two quantities, i.e., a : b : : c : d and is read as ‘a is to b is as c is to d’. The symbol ‘ : : ‘ stands for ‘is as’.

(ii) Each quantity in a proportion is called its term or its proportional.

(iii) In a proportion; the first and the last terms are called the extremes; whereas the second and the third terms are called the means.

If four numbers a, b, c and d are in proportional (i.e., a : b : : c : d), then a and d are known as extreme terms and b and c are called middle terms.

(v) The fourth term of a proportion is called fourth proportional.

(vi) For every proportion, the product of the extremes is always equal to the product of the means, i.e., a : b : : c : d if and only if ad = bc.

For example; in proportion 3 : 4 : : 9 : 12;

Product of extremes = 3 × 12 = 36 and product of means = 4 × 9 = 36

(vii) From the terms of a given proportion, we can make three more proportions.

(viii) If x : y = y : z, then x, y, z are said to be continued proportion.

(ix) If x, y, z are in continued proportion, (i.e., x : y : : y : z), then y is the mean proportional between x and z.

(x) If x, y, z are in continued proportion, (i.e., x : y : : y : z), then the third quantity is called the third proportional to the first and second i.e., z is the third proportional to x and y.


Properties of proportion will help us to solve different types of problems on ratio and proportion.

Solved Example:

Find the fourth proportional of 3, 4 and 18.

Solution:

Let the fourth proportional be x.

Therefore, 3 : 4 = 18 : x

⇒ 3 × x = 4 × 18; from the above property (vi) we know product of extremes = product of means

⇒ 3x = 72

⇒ x = 72/3

⇒ x = 24







6th Grade Page

From Properties of Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    Jan 17, 25 12:34 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Multiplying 2-Digit Numbers by 2-Digit Numbers |Multiplying by 2-Digit

    Jan 17, 25 01:46 AM

    Multiplying 2-Digit Numbers by 2-Digit Numbers
    We will learn how to multiply 2-digit numbers by 2-digit numbers.

    Read More

  3. Multiplying 3-Digit Numbers by 2-Digit Numbers | 3-Digit by 2-Digit

    Jan 17, 25 01:17 AM

    Multiplying 3-Digit Numbers by 2-Digit Numbers
    "We will learn how to multiply 3-digit numbers by 2-digit numbers.

    Read More

  4. 4-Digits by 1-Digit Multiplication |Multiply 4-Digit by 1-Digit Number

    Jan 17, 25 12:01 AM

    4-Digit by 1-Digit Multiply
    Here we will learn 4-digits by 1-digit multiplication. We know how to multiply three digit number by one digit number. In the same way we can multiply 4-digit numbers by 1-digit numbers without regrou…

    Read More

  5. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More