Processing math: 25%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Properties of Angles of a Triangle

We will discuss about some of the properties of angles of a triangle.

1. The three angles of a triangle are together equal to two right angles.

ABC is a triangle.

Then ∠ZXY + ∠XYZ + ∠YZX = 180°

Using this property, let us solve some of the examples.


Solved examples:

(i) In ∆XYZ, ∠X = 55° and ∠Y = 75°. Find ∠Z.

Solution:

∠X + ∠Y + ∠Z = 180°

or, 55° + 75° + ∠Z = 180°

or, 130° + ∠Z = 180°

or, 130° - 130° + ∠Z = 180° - 130°

Therefore, ∠Z = 50°

(ii) In the ∆XYZ, ∠Y = 5∠Z and ∠X= 3∠Z. Find the angles of the triangle.

Solution:

∠X + ∠Y + ∠Z = 180°

or, 3∠Z + 5∠Z + ∠Z = 180°

or, 9∠Z = 180°

or, 9Z9 = \frac{180°}{9}

Therefore, ∠Z = 20°

We know, ∠X= 3∠Z 

Now, plug-in the value of ∠Z

∠X= 3 × 20°

Therefore, ∠X= 60°

Again we know, ∠Y= 5∠Z 

Now, plug-in the value of ∠Z

∠Y= 5 × 20°

Therefore, ∠Y= 100°

Hence, the angles of the triangle are ∠X = 60°, ∠Y = 100° and ∠Z = 20°.


2. If one side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

The side QR of the ∆PQR is produced to S.

Then ∠PRS = ∠RPQ + ∠PQR

Corollary 1: An exterior angle of a triangle is greater than either of the interior opposite angles.

In ∆PQR, QR is produced to S. 

Therefore, ∠PRS > ∠RPQ and ∠PRS ∠PQR

Corollary 2: A triangle can have only one right angle.

Corollary 3: A triangle can have only one obtuse angle.

Corollary 4: A triangle must have at least two acute angles.

Corollary 5: In a right-angled triangle, the acute angles are complementary.

Now, using this property, let us solve some of the following examples.


Solved examples:

(i) Find ∠Q from the given figure.

Solution:

∠P + ∠Q = ∠PRS

Given, ∠P = 50° and ∠PRS = 120° 

or, 50° + ∠Q = 120°

or, 50° - 50° + ∠Q = 120° - 50°

or, ∠Q = 120° - 50°

Therefore, ∠Q = 70°


(ii) From the given figure find all the angles of ∆ABC, given that ∠B = ∠C.

Solution:

Given, ∠B = ∠C

We know, ∠DAC = 150°

∠DAC + ∠CAB = 180°, as they form a linear pair

or, 150° + ∠CAB = 180°

or, 150° - 150° + ∠CAB = 180° - 150°

or, ∠CAB = 30°

Let ∠B = ∠C = x°

Therefore, x° + x° = 150°, as the exterior angle of a triangle is equal to the sum of the interior opposite angles.

or, 2x° = 150°

or, \frac{2x°}{2} = \frac{150°}{2}

or, x° = 75°

Therefore, ∠B = ∠C = 75°.






9th Grade Math

From Properties of Angles of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More