Properties of Angles of a Triangle

We will discuss about some of the properties of angles of a triangle.

1. The three angles of a triangle are together equal to two right angles.

ABC is a triangle.

Then ∠ZXY + ∠XYZ + ∠YZX = 180°

Using this property, let us solve some of the examples.


Solved examples:

(i) In ∆XYZ, ∠X = 55° and ∠Y = 75°. Find ∠Z.

Solution:

∠X + ∠Y + ∠Z = 180°

or, 55° + 75° + ∠Z = 180°

or, 130° + ∠Z = 180°

or, 130° - 130° + ∠Z = 180° - 130°

Therefore, ∠Z = 50°

(ii) In the ∆XYZ, ∠Y = 5∠Z and ∠X= 3∠Z. Find the angles of the triangle.

Solution:

∠X + ∠Y + ∠Z = 180°

or, 3∠Z + 5∠Z + ∠Z = 180°

or, 9∠Z = 180°

or, \(\frac{9∠Z}{9}\) = \(\frac{180°}{9}\)

Therefore, ∠Z = 20°

We know, ∠X= 3∠Z 

Now, plug-in the value of ∠Z

∠X= 3 × 20°

Therefore, ∠X= 60°

Again we know, ∠Y= 5∠Z 

Now, plug-in the value of ∠Z

∠Y= 5 × 20°

Therefore, ∠Y= 100°

Hence, the angles of the triangle are ∠X = 60°, ∠Y = 100° and ∠Z = 20°.


2. If one side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

The side QR of the ∆PQR is produced to S.

Then ∠PRS = ∠RPQ + ∠PQR

Corollary 1: An exterior angle of a triangle is greater than either of the interior opposite angles.

In ∆PQR, QR is produced to S. 

Therefore, ∠PRS > ∠RPQ and ∠PRS ∠PQR

Corollary 2: A triangle can have only one right angle.

Corollary 3: A triangle can have only one obtuse angle.

Corollary 4: A triangle must have at least two acute angles.

Corollary 5: In a right-angled triangle, the acute angles are complementary.

Now, using this property, let us solve some of the following examples.


Solved examples:

(i) Find ∠Q from the given figure.

Solution:

∠P + ∠Q = ∠PRS

Given, ∠P = 50° and ∠PRS = 120° 

or, 50° + ∠Q = 120°

or, 50° - 50° + ∠Q = 120° - 50°

or, ∠Q = 120° - 50°

Therefore, ∠Q = 70°


(ii) From the given figure find all the angles of ∆ABC, given that ∠B = ∠C.

Solution:

Given, ∠B = ∠C

We know, ∠DAC = 150°

∠DAC + ∠CAB = 180°, as they form a linear pair

or, 150° + ∠CAB = 180°

or, 150° - 150° + ∠CAB = 180° - 150°

or, ∠CAB = 30°

Let ∠B = ∠C = x°

Therefore, x° + x° = 150°, as the exterior angle of a triangle is equal to the sum of the interior opposite angles.

or, 2x° = 150°

or, \(\frac{2x°}{2}\) = \(\frac{150°}{2}\)

or, x° = 75°

Therefore, ∠B = ∠C = 75°.






9th Grade Math

From Properties of Angles of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More