Problems on Quadratic Equation

We will solve different types of problems on quadratic equation using quadratic formula and by method of completing the squares. We know the general form of the quadratic equation i.e., ax\(^{2}\) + bx + c = 0, that will help us to find the nature of the roots and formation of the quadratic equation whose roots are given.

1. Solve the quadratic equation 3x\(^{2}\) + 6x + 2 = 0 using quadratic formula.

Solution:

The given quadratic equation is 3x\(^{2}\) + 6x + 2 = 0.

Now comparing the given quadratic equation with the general form of the quadratic equation ax\(^{2}\) + bx + c = 0 we get,

a = 3, b = 6 and c = 2

Therefore, x = \(\frac{- b ± \sqrt{b^{2} - 4ac}}{2a}\)

⇒ x = \(\frac{- 6 ± \sqrt{6^{2} - 4(3)(2)}}{2(3)}\)

⇒ x = \(\frac{- 6 ± \sqrt{36 - 24}}{6}\)

⇒ x = \(\frac{- 6 ± \sqrt{12}}{6}\)

⇒ x = \(\frac{- 6 ± 2\sqrt{3}}{6}\)

⇒ x = \(\frac{- 3 ± \sqrt{3}}{3}\)

Hence, the given quadratic equation has two and only two roots.

The roots are \(\frac{- 3 - \sqrt{3}}{3}\) and \(\frac{- 3 - \sqrt{3}}{3}\).

 

2. Solve the equation 2x\(^{2}\) - 5x + 2 = 0 by the method of completing the squares.

 Solutions:

The given quadratic equation is 2x\(^{2}\) - 5x + 2 = 0

Now dividing both sides by 2 we get,

x\(^{2}\) - \(\frac{5}{2}\)x + 1 = 0

⇒ x\(^{2}\) - \(\frac{5}{2}\)x = -1

Now adding \((\frac{1}{2} \times \frac{-5}{2})\) = \(\frac{25}{16}\) on both the sides, we get

⇒ x\(^{2}\) - \(\frac{5}{2}\)x + \(\frac{25}{16}\) = -1 + \(\frac{25}{16}\)

⇒ \((x - \frac{5}{4})^{2}\) = \(\frac{9}{16}\)

⇒ \((x - \frac{5}{4})^{2}\) = (\(\frac{3}{4}\))\(^{2}\)

⇒ x - \(\frac{5}{4}\) = ± \(\frac{3}{4}\)

⇒ x = \(\frac{5}{4}\) ± \(\frac{3}{4}\)

⇒ x = \(\frac{5}{4}\) - \(\frac{3}{4}\) and \(\frac{5}{4}\) + \(\frac{3}{4}\)

⇒ x = \(\frac{2}{4}\) and \(\frac{8}{4}\)

⇒ x = \(\frac{1}{2}\) and 2

Therefore, the roots of the given equation are \(\frac{1}{2}\) and 2.


3. Discuss the nature of the roots of the quadratic equation 4x\(^{2}\) - 4√3 + 3 = 0.

Solution:

The given quadratic equation is 4x\(^{2}\) - 4√3 + 3 = 0

Here the coefficients are real.

The discriminant D = b\(^{2}\) - 4ac = (-4√3 )\(^{2}\) - 4 4 3 = 48 - 48 = 0

Hence the roots of the given equation are real and equal.


4. The coefficient of x in the equation x\(^{2}\) + px + q = 0 was taken as 17 in place of 13 and thus its roots were found to be -2 and -15. Find the roots of the original equation.

Solution:

According to the problem -2 and -15 are the roots of the equation x\(^{2}\) + 17x + q = 0.

Therefore, the product of the roots = (-2)(-15) = \(\frac{q}{1}\)

⇒ q = 30.

Hence, the original equation is x\(^{2}\) – 13x + 30 = 0

⇒ (x + 10)(x + 3) = 0

⇒ x = -3, -10

Therefore, the roots of the original equation are -3 and -10.






11 and 12 Grade Math 

From Problems on Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 13, 24 01:35 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More