Problems on Quadratic Equation

We will solve different types of problems on quadratic equation using quadratic formula and by method of completing the squares. We know the general form of the quadratic equation i.e., ax\(^{2}\) + bx + c = 0, that will help us to find the nature of the roots and formation of the quadratic equation whose roots are given.

1. Solve the quadratic equation 3x\(^{2}\) + 6x + 2 = 0 using quadratic formula.

Solution:

The given quadratic equation is 3x\(^{2}\) + 6x + 2 = 0.

Now comparing the given quadratic equation with the general form of the quadratic equation ax\(^{2}\) + bx + c = 0 we get,

a = 3, b = 6 and c = 2

Therefore, x = \(\frac{- b ± \sqrt{b^{2} - 4ac}}{2a}\)

⇒ x = \(\frac{- 6 ± \sqrt{6^{2} - 4(3)(2)}}{2(3)}\)

⇒ x = \(\frac{- 6 ± \sqrt{36 - 24}}{6}\)

⇒ x = \(\frac{- 6 ± \sqrt{12}}{6}\)

⇒ x = \(\frac{- 6 ± 2\sqrt{3}}{6}\)

⇒ x = \(\frac{- 3 ± \sqrt{3}}{3}\)

Hence, the given quadratic equation has two and only two roots.

The roots are \(\frac{- 3 - \sqrt{3}}{3}\) and \(\frac{- 3 - \sqrt{3}}{3}\).

 

2. Solve the equation 2x\(^{2}\) - 5x + 2 = 0 by the method of completing the squares.

 Solutions:

The given quadratic equation is 2x\(^{2}\) - 5x + 2 = 0

Now dividing both sides by 2 we get,

x\(^{2}\) - \(\frac{5}{2}\)x + 1 = 0

⇒ x\(^{2}\) - \(\frac{5}{2}\)x = -1

Now adding \((\frac{1}{2} \times \frac{-5}{2})\) = \(\frac{25}{16}\) on both the sides, we get

⇒ x\(^{2}\) - \(\frac{5}{2}\)x + \(\frac{25}{16}\) = -1 + \(\frac{25}{16}\)

⇒ \((x - \frac{5}{4})^{2}\) = \(\frac{9}{16}\)

⇒ \((x - \frac{5}{4})^{2}\) = (\(\frac{3}{4}\))\(^{2}\)

⇒ x - \(\frac{5}{4}\) = ± \(\frac{3}{4}\)

⇒ x = \(\frac{5}{4}\) ± \(\frac{3}{4}\)

⇒ x = \(\frac{5}{4}\) - \(\frac{3}{4}\) and \(\frac{5}{4}\) + \(\frac{3}{4}\)

⇒ x = \(\frac{2}{4}\) and \(\frac{8}{4}\)

⇒ x = \(\frac{1}{2}\) and 2

Therefore, the roots of the given equation are \(\frac{1}{2}\) and 2.


3. Discuss the nature of the roots of the quadratic equation 4x\(^{2}\) - 4√3 + 3 = 0.

Solution:

The given quadratic equation is 4x\(^{2}\) - 4√3 + 3 = 0

Here the coefficients are real.

The discriminant D = b\(^{2}\) - 4ac = (-4√3 )\(^{2}\) - 4 4 3 = 48 - 48 = 0

Hence the roots of the given equation are real and equal.


4. The coefficient of x in the equation x\(^{2}\) + px + q = 0 was taken as 17 in place of 13 and thus its roots were found to be -2 and -15. Find the roots of the original equation.

Solution:

According to the problem -2 and -15 are the roots of the equation x\(^{2}\) + 17x + q = 0.

Therefore, the product of the roots = (-2)(-15) = \(\frac{q}{1}\)

⇒ q = 30.

Hence, the original equation is x\(^{2}\) – 13x + 30 = 0

⇒ (x + 10)(x + 3) = 0

⇒ x = -3, -10

Therefore, the roots of the original equation are -3 and -10.






11 and 12 Grade Math 

From Problems on Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 24, 25 01:45 AM

    Addition of Decimals
    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  2. Addition of Like Fractions | Examples | Videos | Worksheet | Fractions

    Apr 23, 25 09:23 AM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  3. Subtraction | How to Subtract 2-digit, 3-digit, 4-digit Numbers?|Steps

    Apr 23, 25 12:41 AM

    Subtraction Example
    The answer of a subtraction sum is called DIFFERENCE. How to subtract 2-digit numbers? Steps are shown to subtract 2-digit numbers.

    Read More

  4. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Apr 23, 25 12:38 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  5. Subtraction with Regrouping | 4-Digit, 5-Digit and 6-Digit Subtraction

    Apr 23, 25 12:34 AM

     Subtraction of 5-Digit Numbers with Regrouping
    We will learn subtraction 4-digit, 5-digit and 6-digit numbers with regrouping. Subtraction of 4-digit numbers can be done in the same way as we do subtraction of smaller numbers. We first arrange the…

    Read More