Problems on Properties of Isosceles Triangles

Here we will solve some numerical problems on the properties of isosceles triangles.

1. Find x° from the below figures.

Problems on Properties of Isosceles Triangles

Solution: 

In ∆XYZ, XY = XZ.

Therefore, ∠XYZ = ∠XZY = x°.

Now, ∠YXZ + ∠XYZ + XZY = 180°

⟹ 84° + x° + x° = 180°

⟹ 2x° = 180° - 84°

⟹ 2x° = 96°

⟹ x° = 48°

2. Find x° from the given figures.

Problems on Isosceles Triangles

Solution: 

LMN, LM = MN.

Therefore, ∠MLN = ∠MNL

Thus, ∠MLN = ∠MNL = 55°, [since ∠MLN = 55°]

Now, ∠MLN + ∠LMN + ∠MNL = 180°

⟹ 55° + x° + 55° = 180°

⟹ x° + 110° = 180°

⟹ x° = 180° - 110°

⟹ x° = 70°


3. Find x° and y° from the given figure.

Problems Based on Isosceles Triangles

Solution:

In ∆XYP,

∠YXP = 180° - ∠QXY, as they form a linear pair.

Therefore, ∠YXP = 180° - 130°

⟹ ∠YXP = 50°

Now, XP = YP

⟹ ∠YXP = ∠XYP = 50°.

Therefore, ∠XPY = 180° - (∠YXP + ∠XYP), as the sum of three angles of a triangle is 180°

⟹ ∠XPY = 180° - (50° + 50°)

⟹ ∠XPY = 180° - 100°

⟹ ∠XPY = 80°

Now, x° = ∠XPZ = 180° - ∠XPY (linear pair).

⟹ x° = 180° - 80°

⟹ x° = 100°

Also, in ∆XPZ we have,

XP = ZP

Therefore, ∠PXZ = ∠XZP = z°

Therefore, in ∆XPZ we have,

∠XPZ + ∠PXZ + ∠XZP = 180°

⟹ x° + z° + z° = 180°

⟹ 100° + z° + z° = 180°

⟹ 100° + 2z° = 180°

⟹ 2z° = 180° - 100°

⟹ 2z° = 80°

⟹ z° = \(\frac{80°}{2}\)

⟹ z° = 40°

Therefore, y° = ∠XZR = 180° - ∠XZP

⟹ y° = 180° - 40°

⟹ y° = 140°.

4. In the adjoining figure, it is given that XY = 3y, XZ = 7x, XP = 9x and XQ = 13 + 2y. Find the values of x and y.

Problem Based on Isosceles Triangles

Solution:

It is given that XY = XZ

Therefore, 3y = 7x

⟹ 7x - 3y = 0 ............................ (I)

Also, we have XP = XQ

Therefore, 9x = 13 + 2y

⟹ 9x – 2y – 13 = 0 ............................ (II)

Multiplying (I) by (II), we get:

14x - 6y = 0 ............................ (III)

Multiplying (II) by (III), we get:

27x – 6y – 39 = 0 ............................ (IV)

Subtracting (III) from (IV) we get,

13x - 39 = 0

⟹ 13x = 39

⟹ x = \(\frac{39}{13}\)

⟹ x = 3

Substituting x = 3 in (I) we get,

7 × 3 – 3y = 0

⟹ 21 – 3y =0

⟹ 21 = 3y

⟹ 3y = 21

⟹ y = \(\frac{21}{3}\)

⟹ y = 7.

Therefore, x = 3 and y = 7.





9th Grade Math

From Problems on Properties of Isosceles Triangles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More