Problems on Properties of Isosceles Triangles

Here we will solve some numerical problems on the properties of isosceles triangles.

1. Find x° from the below figures.

Problems on Properties of Isosceles Triangles

Solution: 

In ∆XYZ, XY = XZ.

Therefore, ∠XYZ = ∠XZY = x°.

Now, ∠YXZ + ∠XYZ + XZY = 180°

⟹ 84° + x° + x° = 180°

⟹ 2x° = 180° - 84°

⟹ 2x° = 96°

⟹ x° = 48°

2. Find x° from the given figures.

Problems on Isosceles Triangles

Solution: 

LMN, LM = MN.

Therefore, ∠MLN = ∠MNL

Thus, ∠MLN = ∠MNL = 55°, [since ∠MLN = 55°]

Now, ∠MLN + ∠LMN + ∠MNL = 180°

⟹ 55° + x° + 55° = 180°

⟹ x° + 110° = 180°

⟹ x° = 180° - 110°

⟹ x° = 70°


3. Find x° and y° from the given figure.

Problems Based on Isosceles Triangles

Solution:

In ∆XYP,

∠YXP = 180° - ∠QXY, as they form a linear pair.

Therefore, ∠YXP = 180° - 130°

⟹ ∠YXP = 50°

Now, XP = YP

⟹ ∠YXP = ∠XYP = 50°.

Therefore, ∠XPY = 180° - (∠YXP + ∠XYP), as the sum of three angles of a triangle is 180°

⟹ ∠XPY = 180° - (50° + 50°)

⟹ ∠XPY = 180° - 100°

⟹ ∠XPY = 80°

Now, x° = ∠XPZ = 180° - ∠XPY (linear pair).

⟹ x° = 180° - 80°

⟹ x° = 100°

Also, in ∆XPZ we have,

XP = ZP

Therefore, ∠PXZ = ∠XZP = z°

Therefore, in ∆XPZ we have,

∠XPZ + ∠PXZ + ∠XZP = 180°

⟹ x° + z° + z° = 180°

⟹ 100° + z° + z° = 180°

⟹ 100° + 2z° = 180°

⟹ 2z° = 180° - 100°

⟹ 2z° = 80°

⟹ z° = \(\frac{80°}{2}\)

⟹ z° = 40°

Therefore, y° = ∠XZR = 180° - ∠XZP

⟹ y° = 180° - 40°

⟹ y° = 140°.

4. In the adjoining figure, it is given that XY = 3y, XZ = 7x, XP = 9x and XQ = 13 + 2y. Find the values of x and y.

Problem Based on Isosceles Triangles

Solution:

It is given that XY = XZ

Therefore, 3y = 7x

⟹ 7x - 3y = 0 ............................ (I)

Also, we have XP = XQ

Therefore, 9x = 13 + 2y

⟹ 9x – 2y – 13 = 0 ............................ (II)

Multiplying (I) by (II), we get:

14x - 6y = 0 ............................ (III)

Multiplying (II) by (III), we get:

27x – 6y – 39 = 0 ............................ (IV)

Subtracting (III) from (IV) we get,

13x - 39 = 0

⟹ 13x = 39

⟹ x = \(\frac{39}{13}\)

⟹ x = 3

Substituting x = 3 in (I) we get,

7 × 3 – 3y = 0

⟹ 21 – 3y =0

⟹ 21 = 3y

⟹ 3y = 21

⟹ y = \(\frac{21}{3}\)

⟹ y = 7.

Therefore, x = 3 and y = 7.





9th Grade Math

From Problems on Properties of Isosceles Triangles to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More