Problems on Factorization of Expressions of the Form
x\(^{2}\) +(a + b)x +ab

Here we will solve different types of Problems on Factorization of Expressions of the Form x2 + (a + b)x + ab.


1. Factorize: a2 + 25a - 54

Solution:

Here, constant term = -54 = (27) × (-2), and 27 + (-2) = 25 (= coefficient of a).

Therefore, a2 + 25a – 54 = a2 + 27a - 2a - 54 (breaking 25a is sum of two terms, 27a - 2a)

                                    = (a2 + 27a) + (- 2a - 54)

                                    = a(a + 27) - 2(a + 27)

                                    = (a + 27)(a  - 2).





2. Factorize: 3 - 4p + p2

Solution:

Here, constant term = 3 = (-3) × (-1), and (-3) + (-1) = -4 (= coefficient of p).

Therefore, 3 - 4p + p2 = p2 – 4p + 3

                                  =p2 – 3p – p + 3 (breaking -4p is sum of two terms, -3p - p)

                                  = (p2 – 3p) + (- p + 3)

                                  = p(p - 3) - 1(p - 3)

                                  = (p - 3)(p - 1).


3. Factorize: x2 – xy – 30y2

Solution:

Here, -30 = (-6) × 5,  and (-6) + 5 = -1 (= coefficient of xy).

Therefore, x2 – xy – 30y2 = x2 – 6xy + 5xy – 30y2 (breaking -xy is sum of two terms, -6xy + 5xy)

                                      = (x2 – 6xy) + (5xy – 30y2)

                                      = x(x – 6y) + 5y(x – 6y)

                                      = (x – 6y)(x + 5y).









9th Grade Math

From Problems on Factorization of Expressions of the Form x^2 +(a + b)x +ab to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.