Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Problems on Factorization of Expressions of the Form
x\(^{2}\) +(a + b)x +ab

Here we will solve different types of Problems on Factorization of Expressions of the Form x2 + (a + b)x + ab.


1. Factorize: a2 + 25a - 54

Solution:

Here, constant term = -54 = (27) × (-2), and 27 + (-2) = 25 (= coefficient of a).

Therefore, a2 + 25a – 54 = a2 + 27a - 2a - 54 (breaking 25a is sum of two terms, 27a - 2a)

                                    = (a2 + 27a) + (- 2a - 54)

                                    = a(a + 27) - 2(a + 27)

                                    = (a + 27)(a  - 2).

2. Factorize: 3 - 4p + p2

Solution:

Here, constant term = 3 = (-3) × (-1), and (-3) + (-1) = -4 (= coefficient of p).

Therefore, 3 - 4p + p2 = p2 – 4p + 3

                                  =p2 – 3p – p + 3 (breaking -4p is sum of two terms, -3p - p)

                                  = (p2 – 3p) + (- p + 3)

                                  = p(p - 3) - 1(p - 3)

                                  = (p - 3)(p - 1).


3. Factorize: x2 – xy – 30y2

Solution:

Here, -30 = (-6) × 5,  and (-6) + 5 = -1 (= coefficient of xy).

Therefore, x2 – xy – 30y2 = x2 – 6xy + 5xy – 30y2 (breaking -xy is sum of two terms, -6xy + 5xy)

                                      = (x2 – 6xy) + (5xy – 30y2)

                                      = x(x – 6y) + 5y(x – 6y)

                                      = (x – 6y)(x + 5y).





9th Grade Math

From Problems on Factorization of Expressions of the Form x^2 +(a + b)x +ab to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.