Playing with Numbers

Playing with numbers using any of the digits from 0 to 9 is discussed here.


Generalized Form:

A number is said to be in a generalized form if it is expressed as the sum of the product of its digits with their respective place values.

Thus, a two-digit number having a and b as its digits at the tens and the ones places respectively is written in the generalized form as 10a + b, i.e., in general, a two-digit number can be written as 10a + b, where ‘a’ can be any of the digits from 1 to 9 and ‘b’ can be any of the digits from 0 to 9.

Similarly, a three-digit number can be written in the generalized form as 100a + 10b + c, where ‘a’ can be any one of the digits from 1 to 9 while ‘b’ and ‘c’ can be any of the digits from 0 to 9.


For example:

The generalized forms of a few numbers are given below:

56 = 10 × 5 + 6;

37 = 10 × 3 + 7;

90 = 10 × 9 + 0;

129 = 100 × 1 + 2 × 10 + 9;

206 = 100 × 2 + 10 × 0 + 6;

700 = 100 × 7 + 10 × 0 + 0.

Word problems on playing with numbers:

1. What is the original number, if the sum of the digits of a two-digit number is seven. By interchanging the digits is twenty seven more than the original number?

Solution:


Let the original number be 10a + b.

Then, ‘a’ is the tens digit and ‘b’ is the units digit.

Since the sum of the digits is 7,

Therefore a + b = 7,

i.e., b = 7 - a..

So, the original number is 10a + (7 - a).

Therefore, the number obtained by interchanging the digits is

10(7 - a) + a,

and so we have {10(7 - a) + a} — {10a + (7 - a)} = 27.

Solving this equation, we get

a = 2.

And so, b = 7 - 2

= 7 - 2

= 5.

Hence, the original number is 10a + b = 20 + 5 = 25.



2. In a two-digit number, the digit in the units place is four times the digit in the tens place and sum of the digits is equal to 10. What is the number?

Solution:


Let the original number be 10a + b

Then, b = 4a and a + b = 10.

We put b = 4a in a + b = 10 so that a + 4a = 10,

i.e., 5a = 10,

i.e., a = 2.

Therefore, a = 2

and b = 4a, [where we know a = 2]

b = 4 × 2

b = 8

Hence, the number is 10a + b = 20 + 8 = 28.


 Fun with Numbers

Playing with Numbers

Test of Divisibility

Number Puzzles and Games


 Fun with Numbers - Worksheets

Worksheet on Number Puzzles and Games











8th Grade Math Practice

From Playing with Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

    May 22, 24 06:21 PM

    The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

    Read More

  2. Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

    May 22, 24 06:14 PM

    Round off to Nearest 1000
    While rounding off to the nearest thousand, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the digit in the hundreds place is = to or > 5…

    Read More

  3. Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

    May 22, 24 05:17 PM

    Round off to Nearest 100
    While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

    Read More

  4. Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

    May 22, 24 03:49 PM

    Rounding to the Nearest 10
    Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…

    Read More

  5. Rounding Numbers | How do you Round Numbers?|Nearest Hundred, Thousand

    May 22, 24 02:33 PM

    rounding off numbers
    Rounding numbers is required when we deal with large numbers, for example, suppose the population of a district is 5834237, it is difficult to remember the seven digits and their order

    Read More