Multiplication of Two Complex Numbers

Multiplication of two complex numbers is also a complex number.

In other words, the product of two complex numbers can be expressed in the standard form A + iB where A and B are real.

Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be two complex numbers (p, q, r and s are real), then their product z\(_{1}\)z\(_{2}\) is defined as

z\(_{1}\)z\(_{2}\) = (pr - qs) + i(ps + qr).

Proof:

Given z\(_{1}\) = p + iq and z\(_{2}\) = r + is

Now, z\(_{1}\)z\(_{2}\) = (p + iq)(r + is) = p(r + is) + iq(r + is) = pr + ips + iqr + i\(^{2}\)qs

We know that i\(^{2}\) = -1. Now putting i\(^{2}\) = -1 we get,

= pr + ips + iqr - qs

= pr - qs + ips + iqr

= (pr - qs) + i(ps + qr).

Thus, z\(_{1}\)z\(_{2}\) = (pr - qs) + i(ps + qr) = A + iB where A = pr - qs and B = ps + qr are real.

Therefore, product of two complex numbers is a complex number.


Note: Product of more than two complex numbers is also a complex number.

For example:

Let z\(_{1}\) = (4 + 3i) and z\(_{2}\) = (-7 + 6i), then

z\(_{1}\)z\(_{2}\) = (4 + 3i)(-7 + 6i)

= 4(-7 + 6i) + 3i(-7 + 6i)

= -28 + 24i - 21i + 18i\(^{2}\)

= -28 + 3i - 18

= -28 - 18 + 3i

= -46 + 3i

 

Properties of multiplication of complex numbers:

If z\(_{1}\), z\(_{2}\) and z\(_{3}\) are any three complex numbers, then

(i) z\(_{1}\)z\(_{2}\) = z\(_{2}\)z\(_{1}\) (commutative law)

(ii) (z\(_{1}\)z\(_{2}\))z\(_{3}\) = z\(_{1}\)(z\(_{2}\)z\(_{3}\)) (associative law)

(iii) z ∙ 1 = z = 1 ∙ z, so 1 acts as the multiplicative identity for the set of complex numbers.

(iv) Existence of multiplicative inverse

For every non-zero complex number z = p + iq, we have the complex number \(\frac{p}{p^{2} + q^{2}}\) - i\(\frac{q}{p^{2} + q^{2}}\) (denoted by z\(^{-1}\) or \(\frac{1}{z}\)) such that

z ∙ \(\frac{1}{z}\) = 1 = \(\frac{1}{z}\) ∙ z (check it)

\(\frac{1}{z}\) is called the multiplicative inverse of z.

Note: If z = p + iq then z\(^{-1}\) = \(\frac{1}{p + iq}\) = \(\frac{1}{p + iq}\) \(\frac{p - iq}{p - iq}\) = \(\frac{p - iq}{p^{2} + q^{2}}\) = \(\frac{p}{p^{2} + q^{2}}\) - i\(\frac{q}{p^{2} + q^{2}}\).

(v) Multiplication of complex number is distributive over addition of complex numbers.

If z\(_{1}\), z\(_{2}\) and z\(_{3}\) are any three complex numbers, then

z\(_{1}\)(z\(_{2}\) + z3) = z\(_{1}\)z\(_{2}\) + z\(_{1}\)z\(_{3}\)

and (z\(_{1}\) + z\(_{2}\))z\(_{3}\) = z\(_{1}\)z\(_{3}\) + z\(_{2}\)z\(_{3}\)

The results are known as distributive laws.


Solved examples on multiplication of two complex numbers:

1. Find the product of two complex numbers (-2 + √3i) and (-3 + 2√3i) and express the result in standard from A + iB.

Solution:

(-2 + √3i)(-3 + 2√3i)

= -2(-3 + 2√3i) + √3i(-3 + 2√3i)

= 6 - 4√3i - 3√3i + 2(√3i)\(^{2}\)

= 6 - 7√3i - 6

= 6 - 6 - 7√3i

= 0 - 7√3i, which is the required form A + iB, where A = 0 and B = - 7√3

 

2. Find the multiplicative inverse of √2 + 7i.

Solution:

Let z = √2 + 7i,

Then \(\overline{z}\) = √2 - 7i and |z|\(^{2}\) = (√2)\(^{2}\) + (7)\(^{2}\) = 2 + 49 = 51.

We know that the multiplicative inverse of z given by

z\(^{-1}\)

= \(\frac{\overline{z}}{|z|^{2}}\)

= \(\frac{√2 - 7i}{51}\)

= \(\frac{√2}{51}\) - \(\frac{7}{51}\)i

Alternatively,

z\(^{-1}\) = \(\frac{1}{z}\)

= \(\frac{1}{√2 + 7i }\)

= \(\frac{1}{√2 + 7i }\) × \(\frac{√2 - 7i}{√2 - 7i }\)

= \(\frac{√2 - 7i}{(√2)^{2} - (7i)^{2}}\)

= \(\frac{√2 - 7i}{2 - 49(-1)}\)

= \(\frac{√2 - 7i}{2 + 49}\)

= \(\frac{√2 - 7i}{51}\)

= \(\frac{√2}{51}\) - \(\frac{7}{51}\)i





11 and 12 Grade Math 

From Multiplication of Two Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More