Multiplication of Two Complex Numbers

Multiplication of two complex numbers is also a complex number.

In other words, the product of two complex numbers can be expressed in the standard form A + iB where A and B are real.

Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be two complex numbers (p, q, r and s are real), then their product z\(_{1}\)z\(_{2}\) is defined as

z\(_{1}\)z\(_{2}\) = (pr - qs) + i(ps + qr).

Proof:

Given z\(_{1}\) = p + iq and z\(_{2}\) = r + is

Now, z\(_{1}\)z\(_{2}\) = (p + iq)(r + is) = p(r + is) + iq(r + is) = pr + ips + iqr + i\(^{2}\)qs

We know that i\(^{2}\) = -1. Now putting i\(^{2}\) = -1 we get,

= pr + ips + iqr - qs

= pr - qs + ips + iqr

= (pr - qs) + i(ps + qr).

Thus, z\(_{1}\)z\(_{2}\) = (pr - qs) + i(ps + qr) = A + iB where A = pr - qs and B = ps + qr are real.

Therefore, product of two complex numbers is a complex number.


Note: Product of more than two complex numbers is also a complex number.

For example:

Let z\(_{1}\) = (4 + 3i) and z\(_{2}\) = (-7 + 6i), then

z\(_{1}\)z\(_{2}\) = (4 + 3i)(-7 + 6i)

= 4(-7 + 6i) + 3i(-7 + 6i)

= -28 + 24i - 21i + 18i\(^{2}\)

= -28 + 3i - 18

= -28 - 18 + 3i

= -46 + 3i

 

Properties of multiplication of complex numbers:

If z\(_{1}\), z\(_{2}\) and z\(_{3}\) are any three complex numbers, then

(i) z\(_{1}\)z\(_{2}\) = z\(_{2}\)z\(_{1}\) (commutative law)

(ii) (z\(_{1}\)z\(_{2}\))z\(_{3}\) = z\(_{1}\)(z\(_{2}\)z\(_{3}\)) (associative law)

(iii) z ∙ 1 = z = 1 ∙ z, so 1 acts as the multiplicative identity for the set of complex numbers.

(iv) Existence of multiplicative inverse

For every non-zero complex number z = p + iq, we have the complex number \(\frac{p}{p^{2} + q^{2}}\) - i\(\frac{q}{p^{2} + q^{2}}\) (denoted by z\(^{-1}\) or \(\frac{1}{z}\)) such that

z ∙ \(\frac{1}{z}\) = 1 = \(\frac{1}{z}\) ∙ z (check it)

\(\frac{1}{z}\) is called the multiplicative inverse of z.

Note: If z = p + iq then z\(^{-1}\) = \(\frac{1}{p + iq}\) = \(\frac{1}{p + iq}\) \(\frac{p - iq}{p - iq}\) = \(\frac{p - iq}{p^{2} + q^{2}}\) = \(\frac{p}{p^{2} + q^{2}}\) - i\(\frac{q}{p^{2} + q^{2}}\).

(v) Multiplication of complex number is distributive over addition of complex numbers.

If z\(_{1}\), z\(_{2}\) and z\(_{3}\) are any three complex numbers, then

z\(_{1}\)(z\(_{2}\) + z3) = z\(_{1}\)z\(_{2}\) + z\(_{1}\)z\(_{3}\)

and (z\(_{1}\) + z\(_{2}\))z\(_{3}\) = z\(_{1}\)z\(_{3}\) + z\(_{2}\)z\(_{3}\)

The results are known as distributive laws.


Solved examples on multiplication of two complex numbers:

1. Find the product of two complex numbers (-2 + √3i) and (-3 + 2√3i) and express the result in standard from A + iB.

Solution:

(-2 + √3i)(-3 + 2√3i)

= -2(-3 + 2√3i) + √3i(-3 + 2√3i)

= 6 - 4√3i - 3√3i + 2(√3i)\(^{2}\)

= 6 - 7√3i - 6

= 6 - 6 - 7√3i

= 0 - 7√3i, which is the required form A + iB, where A = 0 and B = - 7√3

 

2. Find the multiplicative inverse of √2 + 7i.

Solution:

Let z = √2 + 7i,

Then \(\overline{z}\) = √2 - 7i and |z|\(^{2}\) = (√2)\(^{2}\) + (7)\(^{2}\) = 2 + 49 = 51.

We know that the multiplicative inverse of z given by

z\(^{-1}\)

= \(\frac{\overline{z}}{|z|^{2}}\)

= \(\frac{√2 - 7i}{51}\)

= \(\frac{√2}{51}\) - \(\frac{7}{51}\)i

Alternatively,

z\(^{-1}\) = \(\frac{1}{z}\)

= \(\frac{1}{√2 + 7i }\)

= \(\frac{1}{√2 + 7i }\) × \(\frac{√2 - 7i}{√2 - 7i }\)

= \(\frac{√2 - 7i}{(√2)^{2} - (7i)^{2}}\)

= \(\frac{√2 - 7i}{2 - 49(-1)}\)

= \(\frac{√2 - 7i}{2 + 49}\)

= \(\frac{√2 - 7i}{51}\)

= \(\frac{√2}{51}\) - \(\frac{7}{51}\)i





11 and 12 Grade Math 

From Multiplication of Two Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More