Multiplication of Algebraic Fractions

To solve the problems on multiplication of algebraic fractions we will follow the same rules that we already learnt in multiplication of fractions in arithmetic.

From multiplication of fractions we know,

Product of two or more fractions = \(\frac{Product of numerators}{Product of denominators}\)

In algebraic fractions, the product of two or more fractions can be determined in the same way i.e.

Product of two or more fractions = \(\frac{Product of numerators}{Product of denominators}\).


1. Determine the product of the following algebraic fractions:

(i) \(\frac{m}{n} \times \frac{a}{b}\)

Solution:

\(\frac{m}{n} \times \frac{a}{b}\)

=  \(\frac{m   \cdot    a}{n   \cdot    b}\)

= \(\frac{am}{bn}\)


(ii) \(\frac{x}{x  +  y} \times \frac{y}{x  -  y}\)

Solution:

\(\frac{x}{x  +  y} \times \frac{y}{x  -  y}\)

= \(\frac{x  \cdot  y}{(x  +  y)  \cdot   (x  -  y)}\)

= \(\frac{xy}{x^{2}  -  y^{2}}\)


2. Find the product of the algebraic fractions in the lowest form: \(\frac{m}{p  +  q} \times \frac{m}{n} \times \frac{n(p  -  q)}{m(p  +  q)}\)

Solution:

\(\frac{m}{p  +  q} \times \frac{m}{n} \times \frac{n(p  -  q)}{m(p  +  q)}\)

 = \(\frac{m  \cdot  m  \cdot  n(p  -  q)}{(p  +  q)  \cdot  n  \cdot  m(p  +  q)}\)

= \(\frac{m^{2}n(p  -  q)}{mn(p  +  q)^{2}}\)

Here the numerator and denominator have a common factor mn, so by dividing the numerator and denominator of the product by mn, the product in the lowest form will be \(\frac{m (p  -  q)}{(p  +  q)^{2}}\).


3. Find the product and express in the lowest form: \(\frac{x(x  +  y)}{x  -  y} \times \frac{x  -  y}{y(x  +  y)} \times \frac{x}{y}\)

Solution:

\(\frac{x(x  +  y)}{x  -  y} \times \frac{x  -  y}{y(x  +  y)} \times \frac{x}{y}\)

= \(\frac{x(x  +  y)  \cdot  (x  -  y)  \cdot  x}{(x  -  y)  \cdot  y(x  +  y)  \cdot  y}\)

= \(\frac{x^{2}(x  +  y) (x  -  y)}{y^{2}(x  +  y) (x  -  y)}\)

Here, the common factor in the numerator and denominator is (x + y) (x – y). If the numerator and denominator are divided by this common factor, the product in the lowest form will be \(\frac{x^{2}}{y^{2}}\).


4. Find the product of the algebraic fraction: \(\left ( \frac{5a}{2a  -  1} - \frac{a  -  2}{a} \right ) \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

Solution:

\(\left ( \frac{5a}{2a  -  1} - \frac{a  -  2}{a} \right ) \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

Here, the L.C.M. of the denominators of the first part is a(2a – 1) and the L.C.M. of the denominators of the second part is (a + 2)

Therefore,  \(\left \{\frac{5a  \cdot  a}{(2a  -  1)  \cdot  a} - \frac{(a  -  2)  \cdot  (2a  -  1)}{a  \cdot  (2a  -  1)} \right \} \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

= \( \{ \frac{5a^{2}}{a(2a  -  1)} - \frac{(a  -  2)(2a  -  1)}{a(2a  -  1)} \} \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

= \(\frac{5a^{2} - (a  -  2)(2a  -  1)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{5a^{2}  -  (2a^{2}  -  5a  +  2)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{5a^{2}  -  2a^{2}  +  5a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  5a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  6a  -  a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  6a  -  a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a (a  +  2) - 1(a  +  2)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{(a  +  2)(3a  -  1)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{(a  +  2)(3a  -  1)(2a  -  1)}{a(2a  -  1)(a  +  2)}\)

Here, the common factor in the numerator and denominator is (x + 2) (2x - 1). If the numerator and denominator are divided by this common factor, the product in the lowest form will be

= \(\frac{(3a  -  1)}{a}\)







8th Grade Math Practice

From Multiplication of Algebraic Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 17, 25 01:54 PM

    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 17, 25 01:17 PM

    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 17, 25 12:21 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Math Place Value | Place Value | Place Value Chart | Ones and Tens

    Apr 16, 25 03:10 PM

    0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are one-digit numbers. Numbers from 10 to 99 are two-digit numbers. Let us look at the digit 6 in the number 64. It is in the tens place of the number. 6 tens = 60 So…

    Read More

  5. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 16, 25 02:55 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More