Multiplication of Algebraic Fractions

To solve the problems on multiplication of algebraic fractions we will follow the same rules that we already learnt in multiplication of fractions in arithmetic.

From multiplication of fractions we know,

Product of two or more fractions = \(\frac{Product of numerators}{Product of denominators}\)

In algebraic fractions, the product of two or more fractions can be determined in the same way i.e.

Product of two or more fractions = \(\frac{Product of numerators}{Product of denominators}\).


1. Determine the product of the following algebraic fractions:

(i) \(\frac{m}{n} \times \frac{a}{b}\)

Solution:

\(\frac{m}{n} \times \frac{a}{b}\)

=  \(\frac{m   \cdot    a}{n   \cdot    b}\)

= \(\frac{am}{bn}\)


(ii) \(\frac{x}{x  +  y} \times \frac{y}{x  -  y}\)

Solution:

\(\frac{x}{x  +  y} \times \frac{y}{x  -  y}\)

= \(\frac{x  \cdot  y}{(x  +  y)  \cdot   (x  -  y)}\)

= \(\frac{xy}{x^{2}  -  y^{2}}\)


2. Find the product of the algebraic fractions in the lowest form: \(\frac{m}{p  +  q} \times \frac{m}{n} \times \frac{n(p  -  q)}{m(p  +  q)}\)

Solution:

\(\frac{m}{p  +  q} \times \frac{m}{n} \times \frac{n(p  -  q)}{m(p  +  q)}\)

 = \(\frac{m  \cdot  m  \cdot  n(p  -  q)}{(p  +  q)  \cdot  n  \cdot  m(p  +  q)}\)

= \(\frac{m^{2}n(p  -  q)}{mn(p  +  q)^{2}}\)

Here the numerator and denominator have a common factor mn, so by dividing the numerator and denominator of the product by mn, the product in the lowest form will be \(\frac{m (p  -  q)}{(p  +  q)^{2}}\).


3. Find the product and express in the lowest form: \(\frac{x(x  +  y)}{x  -  y} \times \frac{x  -  y}{y(x  +  y)} \times \frac{x}{y}\)

Solution:

\(\frac{x(x  +  y)}{x  -  y} \times \frac{x  -  y}{y(x  +  y)} \times \frac{x}{y}\)

= \(\frac{x(x  +  y)  \cdot  (x  -  y)  \cdot  x}{(x  -  y)  \cdot  y(x  +  y)  \cdot  y}\)

= \(\frac{x^{2}(x  +  y) (x  -  y)}{y^{2}(x  +  y) (x  -  y)}\)

Here, the common factor in the numerator and denominator is (x + y) (x – y). If the numerator and denominator are divided by this common factor, the product in the lowest form will be \(\frac{x^{2}}{y^{2}}\).


4. Find the product of the algebraic fraction: \(\left ( \frac{5a}{2a  -  1} - \frac{a  -  2}{a} \right ) \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

Solution:

\(\left ( \frac{5a}{2a  -  1} - \frac{a  -  2}{a} \right ) \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

Here, the L.C.M. of the denominators of the first part is a(2a – 1) and the L.C.M. of the denominators of the second part is (a + 2)

Therefore,  \(\left \{\frac{5a  \cdot  a}{(2a  -  1)  \cdot  a} - \frac{(a  -  2)  \cdot  (2a  -  1)}{a  \cdot  (2a  -  1)} \right \} \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

= \( \{ \frac{5a^{2}}{a(2a  -  1)} - \frac{(a  -  2)(2a  -  1)}{a(2a  -  1)} \} \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

= \(\frac{5a^{2} - (a  -  2)(2a  -  1)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{5a^{2}  -  (2a^{2}  -  5a  +  2)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{5a^{2}  -  2a^{2}  +  5a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  5a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  6a  -  a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  6a  -  a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a (a  +  2) - 1(a  +  2)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{(a  +  2)(3a  -  1)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{(a  +  2)(3a  -  1)(2a  -  1)}{a(2a  -  1)(a  +  2)}\)

Here, the common factor in the numerator and denominator is (x + 2) (2x - 1). If the numerator and denominator are divided by this common factor, the product in the lowest form will be

= \(\frac{(3a  -  1)}{a}\)







8th Grade Math Practice

From Multiplication of Algebraic Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More