Multiplication of Algebraic Fractions

To solve the problems on multiplication of algebraic fractions we will follow the same rules that we already learnt in multiplication of fractions in arithmetic.

From multiplication of fractions we know,

Product of two or more fractions = \(\frac{Product of numerators}{Product of denominators}\)

In algebraic fractions, the product of two or more fractions can be determined in the same way i.e.

Product of two or more fractions = \(\frac{Product of numerators}{Product of denominators}\).


1. Determine the product of the following algebraic fractions:

(i) \(\frac{m}{n} \times \frac{a}{b}\)

Solution:

\(\frac{m}{n} \times \frac{a}{b}\)

=  \(\frac{m   \cdot    a}{n   \cdot    b}\)

= \(\frac{am}{bn}\)


(ii) \(\frac{x}{x  +  y} \times \frac{y}{x  -  y}\)

Solution:

\(\frac{x}{x  +  y} \times \frac{y}{x  -  y}\)

= \(\frac{x  \cdot  y}{(x  +  y)  \cdot   (x  -  y)}\)

= \(\frac{xy}{x^{2}  -  y^{2}}\)


2. Find the product of the algebraic fractions in the lowest form: \(\frac{m}{p  +  q} \times \frac{m}{n} \times \frac{n(p  -  q)}{m(p  +  q)}\)

Solution:

\(\frac{m}{p  +  q} \times \frac{m}{n} \times \frac{n(p  -  q)}{m(p  +  q)}\)

 = \(\frac{m  \cdot  m  \cdot  n(p  -  q)}{(p  +  q)  \cdot  n  \cdot  m(p  +  q)}\)

= \(\frac{m^{2}n(p  -  q)}{mn(p  +  q)^{2}}\)

Here the numerator and denominator have a common factor mn, so by dividing the numerator and denominator of the product by mn, the product in the lowest form will be \(\frac{m (p  -  q)}{(p  +  q)^{2}}\).


3. Find the product and express in the lowest form: \(\frac{x(x  +  y)}{x  -  y} \times \frac{x  -  y}{y(x  +  y)} \times \frac{x}{y}\)

Solution:

\(\frac{x(x  +  y)}{x  -  y} \times \frac{x  -  y}{y(x  +  y)} \times \frac{x}{y}\)

= \(\frac{x(x  +  y)  \cdot  (x  -  y)  \cdot  x}{(x  -  y)  \cdot  y(x  +  y)  \cdot  y}\)

= \(\frac{x^{2}(x  +  y) (x  -  y)}{y^{2}(x  +  y) (x  -  y)}\)

Here, the common factor in the numerator and denominator is (x + y) (x – y). If the numerator and denominator are divided by this common factor, the product in the lowest form will be \(\frac{x^{2}}{y^{2}}\).


4. Find the product of the algebraic fraction: \(\left ( \frac{5a}{2a  -  1} - \frac{a  -  2}{a} \right ) \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

Solution:

\(\left ( \frac{5a}{2a  -  1} - \frac{a  -  2}{a} \right ) \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

Here, the L.C.M. of the denominators of the first part is a(2a – 1) and the L.C.M. of the denominators of the second part is (a + 2)

Therefore,  \(\left \{\frac{5a  \cdot  a}{(2a  -  1)  \cdot  a} - \frac{(a  -  2)  \cdot  (2a  -  1)}{a  \cdot  (2a  -  1)} \right \} \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

= \( \{ \frac{5a^{2}}{a(2a  -  1)} - \frac{(a  -  2)(2a  -  1)}{a(2a  -  1)} \} \times \left ( \frac{2a}{a  +  2} - \frac{1}{a  +  2}\right )\)

= \(\frac{5a^{2} - (a  -  2)(2a  -  1)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{5a^{2}  -  (2a^{2}  -  5a  +  2)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{5a^{2}  -  2a^{2}  +  5a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  5a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  6a  -  a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a^{2}  +  6a  -  a  -  2}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{3a (a  +  2) - 1(a  +  2)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{(a  +  2)(3a  -  1)}{a(2a  -  1)} \times \frac{2a  -  1}{a  +  2}\)

= \(\frac{(a  +  2)(3a  -  1)(2a  -  1)}{a(2a  -  1)(a  +  2)}\)

Here, the common factor in the numerator and denominator is (x + 2) (2x - 1). If the numerator and denominator are divided by this common factor, the product in the lowest form will be

= \(\frac{(3a  -  1)}{a}\)







8th Grade Math Practice

From Multiplication of Algebraic Fractions to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More