Lowest common multiple of Polynomials by Factorization

How to find the lowest common multiple of polynomials by factorization?

Let us follow the following examples to know how to find the lowest common multiple (L.C.M.) of polynomials by factorization.


Solved examples of lowest common multiple of polynomials by factorization:

1. Find out the L.C.M. of a2 + a and a3 – a by factorization.

Solution:

First expression = a2 + a

                      = a(a + 1), by taking common ‘a’


Second expression = a3 - a

                          = a(a2 - 1), by taking common ‘a’

                          = a(a2 – 12), by using the formula of a2 – b2

                          = a(a + 1) (a - 1), we know a2 – b2 = (a + b) (a – b)

The common factors of the two expressions are ‘a’ and (a + 1); (a - 1) is the extra factor in the second expression.

Therefore, the required L.C.M. of a2 + a and a3 – a is a(a + 1) (a - 1)



2. Find out the L.C.M of x2 - 4 and x2+ 2x by factorization.

Solution:

First expression = x2 - 4

                      = x2 - 22, by using the formula of a2 – b2

                      = (x + 2) (x - 2), we know a2 – b2 = (a + b) (a – b)

Second expression = x2 + 2x

                          = x(x + 2), by taking common ‘x’    

The common factor of the two expressions is ‘(x + 2)’.

The extra common factor in the first expression is (x - 2) and in the second expression is x.

Therefore, the required L.C.M = (x + 2) × (x - 2) × x

                                        = x(x + 2) (x - 2)


3. Find out the L.C.M of x3 + 2x2 and x3 + 3x2 + 2x by factorization.

Solution:

First expression = x3 + 2x2

                      = x2(x + 2), by taking common ‘x2

                      = x × x × (x + 2)

Second expression = x3 + 3x2 + 2x

                          = x(x2 + 3x + 2), by taking common ‘x’

                          = x(x2 + 2x + x + 2), by splitting the middle term 3x = 2x + x

                          = x[x(x + 2) + 1(x + 2)]

                          = x(x + 2) (x + 1)

                          = x × (x + 2) × (x + 1)

In both the expressions, the common factors are ‘x’ and ‘(x + 2)’; the extra common factors are ‘x’ in the first expression and ‘(x + 1)’ in the second expression.

Therefore, the required L.C.M. = x × (x + 2) × x × (x + 1)

                                         = x2(x + 1) (x + 2)







8th Grade Math Practice

From Lowest common multiple of Polynomials by Factorization to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 10 Times Table | Printable Multiplication Table | Video

    Mar 21, 25 03:46 PM

    worksheet on multiplication of 10 times table
    Worksheet on 10 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. 5th Grade Prime and Composite Numbers | Definitions | Examples | Math

    Mar 21, 25 12:18 AM

    5th grade prime and composite numbers

    Read More

  3. 14 Times Table | Read and Write Multiplication Table of 14| Video

    Mar 20, 25 04:03 PM

    14 Times Table
    In 14 times table we will learn how to read and write multiplication table of 14. We read fourteen times table as:One time fourteen is 14 Two times fourteen are 28 Three times fourteen are 42

    Read More

  4. 5th Grade Test of Divisibility Rules | Divisibility Rules From 2 to 12

    Mar 20, 25 04:00 PM

    In 5th grade test of divisibility rules we will learn about the exact divisibility of a number by the numbers from 2 to 12. The digit in the ones place should be 2, 4, 6, 8 or 0.

    Read More

  5. 5th Grade Even and Odd Numbers | Definitions | Examples

    Mar 20, 25 02:45 AM

    Numbers which are exactly divisible by 2 are even numbers. For example. 2,4,6,8,20,48,88, etc. are even numbers. They are multiples of 2. Numbers which are not exactly divisible by 2 are odd numbers…

    Read More