L.C.M. of Polynomials by Factorization

Learn how to solve L.C.M. of polynomials by factorization splitting the middle term.

Solved examples on lowest common multiple of polynomials by factorization:

1. Find the L.C.M of m3 – 3m2 + 2m and m3 + m2 – 6m by factorization.

Solution:

First expression = m3 – 3m2 + 2m

                      = m(m2 – 3m + 2), by taking common ‘m’

                      = m(m2 - 2m - m + 2), by splitting the middle term -3m = -2m - m

                      = m[m(m - 2) - 1(m - 2)]                     

                      = m(m - 2) (m - 1)                     

                      = m × (m - 2) × (m - 1)



Second expression = m3 + m2 – 6m

                          = m(m2 + m - 6) by taking common ‘m’

                          = m(m2 + 3m – 2m - 6), by splitting the middle term m = 3m - 2m

                          = m[m(m + 3) - 2(m + 3)]

                          = m(m + 3)(m - 2)

                          = m × (m + 3) × (m - 2)

In both the expressions, the common factors are ‘m’ and ‘(m - 2)’; the extra common factors are (m - 1) in the first expression and (m + 3) in the 2nd expression.

Therefore, the required L.C.M. = m × (m - 2) × (m - 1) × (m + 3)

                                         = m(m - 1) (m - 2) (m + 3)


2. Find the L.C.M of 3a3 - 18a2x + 27ax2, 4a4 + 24a3x + 36a2x2 and 6a4 - 54a2x2 by factorization.

Solution:

First expression = 3a3 -18a2x + 27ax2

                      = 3a(a2 - 6ax + 9x2), by taking common ‘3a’

              = 3a(a2 - 3ax - 3ax + 9x2), by splitting the middle term - 6ax = - 3ax - 3ax

                      = 3a[a(a - 3x) - 3x(a - 3x)]                     

                      = 3a(a - 3x) (a - 3x)                     

                      = 3 × a × (a - 3x) × (a - 3x)

Second expression = 4a4 + 24a3x + 36a2x2

                          = 4a2(a2 + 6ax + 9x2), by taking common ‘4a2

               = 4a2(a2 + 3ax + 3ax + 9x2), by splitting the middle term 6ax = 3ax + 3ax

                          = 4a2[a(a + 3x) + 3x(a + 3x)]

                          = 4a2(a + 3x) (a + 3x)

                          = 2 × 2 × a × a × (a + 3x) × (a + 3x)

Third expression = 6a4 - 54a2x2

                      = 6a2(a2 - 9x2), by taking common ‘6a2

                      = 6a2[(a)2 - (3x)2), by using the formula of a2 – b2

                      = 6a2(a + 3x) (a - 3x), we know a2 – b2 = (a + b) (a – b)

                      = 2 × 3 × a × a × (a + 3x) × (a - 3x)

The common factors of the above three expressions is ‘a’ and other common factors of first and third expressions are ‘3’ and ‘(a - 3x)’.

The common factors of second and third expressions are ‘2’, ‘a’ and ‘(a + 3x)’.

Other than these, the extra common factors in the first expression is ‘(a - 3x)’ and in the second expression are ‘2’ and ‘(a + 3x)’

Therefore, the required L.C.M. = a × 3 × (a - 3x) × 2 × a × (a + 3x) × (a - 3x) × 2 × (a + 3x) = 12a2(a + 3x)2(a - 3x)2


More problems on L.C.M. of polynomials by factorization splitting the middle term:

3. Find the L.C.M. of 4(a2 - 4), 6(a2 - a - 2) and 12(a2 + 3a - 10) by factorization.

Solution:

First expression = 4(a2 - 4)

                      = 4(a2 - 22), by using the formula of a2 – b2

                      = 4(a + 2) (a - 2), we know a2 – b2 = (a + b) (a – b)

                      = 2 × 2 × (a + 2) × (a - 2)

Second expression = 6(a2 - a - 2)

                          = 6(a2 – 2a + a - 2), by splitting the middle term – a = – 2a + a

                          = 6[a(a - 2) + 1(a - 2)]

                          = 6(a - 2) (a + 1)

                          = 2 × 3 × (a - 2) × (a + 1)

Third expression = 12(a2 + 3a - 10)

                      = 12(a2 + 5a – 2a - 10), by splitting the middle term 3a = 5a – 2a

                      = 12[a(a + 5) - 2(a + 5)]

                      = 12(a + 5) (a - 2)

                      = 2 × 2 × 3 × (a + 5) × (a - 2)

In the above three expressions the common factors are 2 and (a - 2).

Only in the second expression and third expression the common factor is 3.

Other than these, the extra common factors are (a + 2) in the first expression, (a + 1) in the second expression and 2, (a + 5) in the third expression.

Therefore, the required L.C.M. = 2 × (a - 2) × 3 × (a + 2) × (a + 1) × 2 × (a + 5)

                                         = 12(a + 1) (a + 2) (a - 2) (a + 5)







8th Grade Math Practice

From L.C.M. of Polynomials by Factorization to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 17, 25 01:17 PM

    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  2. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 17, 25 12:21 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  3. Math Place Value | Place Value | Place Value Chart | Ones and Tens

    Apr 16, 25 03:10 PM

    0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are one-digit numbers. Numbers from 10 to 99 are two-digit numbers. Let us look at the digit 6 in the number 64. It is in the tens place of the number. 6 tens = 60 So…

    Read More

  4. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 16, 25 02:55 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. Face Value and Place Value|Difference Between Place Value & Face Value

    Apr 16, 25 02:50 PM

    Place Value and Face Value
    What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

    Read More