Subscribe to our YouTube channel for the latest videos, updates, and tips.


Laws of Equality

Before knowing the properties of equality, let me introduce you to the properties of algebra. Below are given some properties which are applied in algebra:

1. Associative property of addition:

(a+b) +c = a + (b+c)


2. Commutative property of addition:

a + b = b + a


3. Additive property of 0:

a + 0 = 0 + a = a

4. Existence of additive inverses:

For every ‘a’ there exists (-a) so that a + (-a) = 0.


5. Associative property of multiplication:

(a x b) x c = a x (b x c)


6. Commutative property of multiplication:

a x b = b x a


7) Multiplicative identity property of 1:

a x 1 = 1 x a =a


8. Existence of multiplicative inverse:

For every ‘a’not equal to 0, there exists 1/a so that 

a x 1/a = 1/a x a = 1.


9. Distributive property of multiplication over addition:

a x (b + c) = a x b + a x c


Following are the some of the solved examples based on the above given properties to make the better understanding of the concept:


1. Associative property of addition:

The way 3 numbers are grouped when adding does not change the sum.

Example: 3 + (4 + 9) = (3 + 4) + 9 = 16.


2. Commutative property of addition:

The order in which two numbers are added does not change their sum.

Example: 3 + 9 = 9 + 3 = 12.


3. Additive identity property of 0:

The sum of a number and 0 is the number itself.

Example: 16 + 0 = 0 + 16 = 16.


4. Existence of additive inverses:

The sum of a number and its compliment (opposite) is equal to 0.

Eg. 12 + (-12) = 0.


5. Associative property of multiplication:

The way 3 numbers are grouped when multiplying does not change the product.

Eg. 4 x (3 x 2) = (4 x 3) x 2 = 24.


6. Commutative property of multiplication:

The order in which two numbers are multiplied does not change their product.

Example: 4 x 8 = 8 x 4 = 32.


7. Multiplicative identity property of 1:

The product of a number and 1 is the number itself.

Example: 8 x 1 = 8


8. Existence of multiplicative inverses:

The product of a number (which is not equal to 0) and its reciprocal is equal to 1.

Example: 4 x ¼ = 1.


9. Distributive property of multiplication over addition:

When multiplying a number by a sum, the number can be multiplied by each term in the sum. Multiplication can also be distributed over subtraction.

Example: Multiplication over addition:

      3 x (4 + 5) = 3 x 4 + 3 x 5 = 12 + 15 = 27.

Now, let me introduce you to the properties of equality. Following are the properties of equality:

1. Reflexive property of equality:

a = a.


2. Symmetric property of equality:

If a = b, then b = a.


3. Transitive property of equality:

If a = b and b = c, then a =c.


4. Addition property of equality;

If a = b, then a + c = b + c.


5. Subtraction property of equality:

If a = b, then a – c = b – c.


6. Multiplication property of equality:

If a = b, then a x c = b x c.


7. Division property of equality;

If a = b and ‘c’ is not equal to 0, then a/c = b/c.


8. Substitution property of equality:

If a = b, then ‘b’ may be substituted for ‘a’ in any expression containing ‘a’.


Below are given explanations and examples for the above mentioned properties of equality:

1. Reflexive property of equality:

Any number is equal to itself.

Example: 14 = 14.


2. Symmetric property of equality:

An equation may be written in the opposite order,

Example: If y = 45, then 45 = y.


3. Transitive property of equality:

Two quantities that are equal to the same thing are equal to each other.

Example: If x = 10 and 10 = y, then x = y.


4. Addition property of equality:

The same number can be added to both sides of an equation.

Example: If x = 35, then x + 4 = 35 + 4.


5. Subtraction property of equality:

The same number can be subtracted from both sides of an equation.

If x = 13, then x – 4 = 13 – 4.


6. Division property of equality:

Both sides of an equation can be divided by any non- zero number.

Example: If x = 8, then x/2 = 8/2.


7. Substitution property of equality;

A number may be substituted for its equal in any expression.

Example: If x = 80 and y = 80, then x = y.






9th Grade Math

From Laws of Equality to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 19, 25 02:53 PM

    Worksheet on Average
    In worksheet on average we will solve different types of questions on the concept of average, calculating the average of the given quantities and application of average in different problems.

    Read More

  2. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More