Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Finding the Unknown Angle

Problems on finding the unknown angle using trigonometric identities.

1. Solve: tan θ + cot θ = 2, where 0° < θ < 90°.

Solution:

Here, tan θ + cot θ = 2

⟹ tan θ + \(\frac{1}{tan θ}\) = 2

\(\frac{tan^{2} θ + 1}{tan θ}\) = 2

⟹ tan\(^{2}\) θ + 1 = 2 tan θ

⟹ tan\(^{2}\) θ - 2 tan θ + 1 = 0

⟹ (tan θ - 1)\(^{2}\) = 0

⟹ tan θ – 1 = 0

⟹ tan θ = 1

⟹ tan θ = tan 45°

⟹ θ = 45°.

Therefore, θ = 45°.


2. Is \(\frac{sin θ}{1 – cos θ}\) + \(\frac{sin θ}{1 + cos θ}\) = 4 an identity? If not, find θ (0° < θ < 90°).

Solution:

Here, LHS = \(\frac{sin θ(1 + cos θ) + sin θ(1 - cos θ)}{(1 – cos θ)(1 + cos θ)}\)

                = \(\frac{2sin θ}{1 – cos^{2} θ}\)

                = \(\frac{2sin θ}{sin^{2} θ}\), [using trigonometric identities, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

                = \(\frac{2 }{sin θ}\)

Thus, the given equality becomes \(\frac{2 }{sin θ}\) = 4.

Now, if the equality holds true for all values of θ then the equality is an identity.

Let us take (arbitrarily) θ = 45°.

So, \(\frac{2 }{sin 45°}\) = \(\frac{2 }{\frac{1}{√2}}\) = 2√2

So, sin θ ≠ 4.

Therefore, the equality is not an identity.

It is an equation. Then, from the equation we have,

\(\frac{2}{sin θ}\) = 4

⟹ sin θ = \(\frac{1}{2}\)

⟹ sin θ = sin 30°

Therefore, θ = 30°.


3. If 5 cos θ + 12 sin θ = 13, find sin θ.

Solution:

5 cos θ + 12 sin θ = 13

⟹ 5 cos θ = 13 - 12 sin θ

⟹ (5 cos θ)\(^{2}\) = (13 – 12 sin θ)\(^{2}\)

⟹ 25 cos\(^{2}\) θ = 169 - 312 sin θ + 144 sin θ\(^{2}\)

⟹ 25(1 - sin\(^{2}\) θ) = 169 - 312 sin θ + 144 sin θ\(^{2}\), [using trigonometric identities, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

⟹ 25 – 25 sin\(^{2}\) θ = 169 – 312 sin θ + 144 sin θ\(^{2}\),

⟹ 169 sin\(^{2}\) θ – 312 sin θ + 144 = 0

⟹ (13 sin θ – 12)\(^{2}\) = 0

Therefore, 13 sin θ – 12 = 0

⟹ sin θ = \(\frac{12}{13}\).

Finding the Unknown Angle

4. If \(\sqrt{3}\)sin θ - cos θ = 0, prove that tan 2θ = \(\frac{2 tan θ}{1 – tan^{2} θ}\).

Solution:

Here, \(\sqrt{3}\)sin θ - cos θ = 0

⟹ \(\frac{sin θ}{cos θ}\) = \(\frac{1}{\sqrt{3}}\)

⟹ tan θ = \(\frac{1}{\sqrt{3}}\)

⟹ tan θ = tan 30°

⟹ θ = 30°

Therefore, tan 2θ = tan (2 × 30°) = tan 60° = √3

Now, \(\frac{2 tan θ}{1 – tan^{2} θ}\) = \(\frac{2 tan 30°}{1 – tan^{2} 30°}\)

                   = \(\frac{2 × \frac{1}{\sqrt{3}}}{1 – (\frac{1}{\sqrt{3}})^{2}}\)

                   = \(\frac{\frac{2}{\sqrt{3}}}{1 – \frac{1}{3}}\)

                   = \(\frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}}\)

                   = \(\frac{2}{√3}\) × \(\frac{3}{2}\)

                   = √3.

Therefore, tan 2θ = \(\frac{2 tan θ}{1 – tan^{2} θ}\). (proved)






10th Grade Math

From Finding the Unknown Angle to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.