Factorization of Perfect Square Trinomials

In factorization of perfect square trinomials we will learn how to solve the algebraic expressions using the formulas. To factorize an algebraic expression expressible as a perfect square, we use the following identities:

(i) a2 + 2ab + b2 = (a + b)2 = (a + b) (a + b)

(ii) a2 - 2ab + b2 = (a - b)2 = (a - b) (a - b)

Note: We will also learn to use two identities in the same question, to factorize the expression.


Solved problems on factorization of perfect square trinomials:

1. Factorization when the given expression is a perfect square:

(i) x4 - 10x2y2 + 25y4



Solution:

We can express the given expression x4 - 10x2y2 + 25y4 as a2 - 2ab + b2

= (x2)2 - 2 (x2) (5y2) + (5y2)2

Now it’s in the form of the formula of a2 + 2ab + b2 = (a + b)2 then we get,

= (x2 - 5y2)2

= (x2 – 5y2) (x2 – 5y2)


(ii) x2+ 6x + 9

Solution:

We can express the given expression x2 + 6x + 9 as a2 + 2ab + b2

= (x)2 + 2 (x) (3) + (3)2

Now we will apply the formula of a2 + 2ab + b2 = (a + b)2 then we get,

= (x + 3)2

= (x + 3) (x + 3)


(iii) x4 - 2x2 y2 + y4

Solution:

We can express the given expression x4 - 2x2 y2 + y4 as a2 - 2ab + b2

= (x2)2 - 2 (x2) (y2) + (y2)2

Now we will apply the formula of a2 - 2ab + b2 = (a - b)2 then we get,

=(x2 – y2)2

=(x2 - y2) (x2 – y2)

Now we will apply the formula of differences of two squares i.e. a2 - b2 = (a + b) (a – b) then we get,

= (x + y) (x- y) (x + y) (x- y)



2. Factorize using the identity:     

(i) 25 – x2 - 2xy - y2

Solution:

25 – x2 - 2xy - y2

= 25 - [x2 + 2xy + y2], rearranged

Now we see that x2 + 2xy + y2 as in the form of a2 + 2ab + b2.

= (5)2 – (x + y)2

Now we will apply the formula of differences of two squares i.e. a2 - b2 = (a + b) (a – b) then we get,

= [5 + (x + y)] [5 - (x + y)]

= (5 + x + y) (5 – x - y)


(ii) 1- 2xy- (x2 + y2)

Solution:

1- 2xy- (x2 + y2)

= 1 - 2xy - x2 - y2

= 1 - (x2 + 2xy + y2), rearranged

= 1 - (x + y )2

= (1)2 – (x + y)2

= [1 + (x + y)] [1 - (x + y)]

= [1 + x + y] [1 - x - y]

Note:

We see that to solve the above problems on factorization of perfect square trinomials we not only used perfect square identities but we also used the difference of two squares identity in different situations.





8th Grade Math Practice

From Factorization of Perfect Square Trinomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Fundamental Operations on Large Numbers Worksheet | 5th Grade Numbers

    Mar 14, 25 05:31 PM

    fundamental operations on large numbers worksheet

    Read More

  2. Word Problems on Division | Examples on Word Problems on Division

    Mar 13, 25 01:01 PM

    Word Problem on Division
    Word problems on division for fourth grade students are solved here step by step. Consider the following examples on word problems involving division: 1. $5,876 are distributed equally among 26 men. H…

    Read More

  3. Division of Whole Numbers |Relation between Dividend, Divisor Quotient

    Mar 13, 25 12:41 PM

    Dividing Whole Numbers
    Relation between Dividend, Divisor, Quotient and Remainder is. Dividend = Divisor × Quotient + Remainder. To understand the relation between dividend, divisor, quotient and remainder let us follow the…

    Read More

  4. Adding 1-Digit Number | Understand the Concept one Digit Number |Video

    Mar 07, 25 03:55 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  5. Vertical Addition | How to Add 1-Digit Number Vertically? | Problems

    Mar 07, 25 02:35 PM

    Vertical Addition
    Now we will learn simple Vertical Addition of 1-digit number by arranging them one number under the other number. How to add 1-digit number vertically?

    Read More