# Factorization by Grouping

Factorization by grouping means that we need to group the terms with common factors before factoring.

Method of factorization by grouping the terms:

(i) From the groups of the given expression a factor can be taken out from each group.

(ii) Factorize each group

(iii) Now take out the factor common to group formed.

Now we will learn how to factor the terms by grouping.

Solved examples of factorization by grouping:

1. Factor grouping the expressions:

1 + a + ac + a2c

Solution:

1 + a + ac + a2c

= (1 + a) + (ac + a2c)

= (1 + a) + ac (1 + a)

= (1 + a) (1 + ac).

2. How to factor by grouping the following algebraic expressions?

(i) a2 - ac + ab - bc

Solution:

a2 - ac + ab - bc

= a(a - c) + b(a - c)

= (a - c) (a + b)

Therefore, by factoring expressions we get (a - c)(a + b)

(ii) a2 + 3a + ac + 3c

Solution:

a2 + 3a + ac + 3c

= a(a + 3) + c(a + 3)

= (a + 3) (a + c)

Therefore, by factoring expressions we get (a + 3)(a + c)

3. Factorize the algebraic expressions:

(i) 2x + cx + 2c + c2

Solution:

2x + cx + 2c + c2

= x(2 + c) + c(2 + c)

= (2 + c) (x + c)

(ii) x2 - ax + 5x - 5a

Solution:

x2 - ax + 5x - 5a

= x(x - a) + 5(x - a)

= (x - a) (x + 5)

(iii) ax - bx - az + bz

Solution:

ax - bx - az + bz

= x(a - b) - z(a - b)

= (a - b) (x - z)

(iv) mx - 2my - nx + 2ny

Solution:

mx - 2my - nx + 2ny

= m(x - 2y) - n(x - 2y)

= (x - 2y) (m - n)

(v) ax2 - 3bxy – axy + 3by2

Solution:

ax2 - 3bxy – axy + 3by2

= x(ax – 3by) – y(ax – 3by)

= (ax - 3by) (ax - y)

4. Factor each of the following expressions by grouping:

(i) x2 - 3x - xy + 3y

Solution:

x2 - 3x - xy + 3y

= x(x – 3) – y(x – 3)

= (x – 3) (x – y)

(ii) ax2 + bx2 + 2a + 2b

Solution:

ax2 + bx2 + 2a + 2b

= x2(a + b) + 2(a + b)

= (a + b) (x2 + 2)

(iii) 2ax2 + 3axy - 2bxy - 3by2

Solution:

2ax2 + 3axy - 2bxy - 3by2

= ax(2x + 3y) - by(2x + 3y)

= (2x + 3y) (ax - by)

(iv) amx2 + bmxy – anxy – bny2

Solution:

amx2 + bmxy – anxy – bny2

= mx(ax + by) – ny(ax + by)

= (ax + by) (mx – ny)

5. Factorize:

(i) (x + y) (2x + 5) - (x + y) (x + 3)

Solution:

(x + y) (2x + 5) - (x + y) (x + 3)

= (x + y) [(2x + 5) - (x + 3)]

= (x + y) [2x + 5 - x -3]

= (x + y) (x + 2)

(ii) 6ab - b2 + 12ac - 2bc

Solution:

6ab - b2 + 12ac - 2bc

= b(6a - b) + 2c(6a - b)

= (6a - b) (b + 2c)

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Fundamental Geometrical Concepts | Point | Line | Properties of Lines

Apr 18, 24 02:58 AM

The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

2. ### What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

Apr 18, 24 02:15 AM

What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

3. ### Simple Closed Curves | Types of Closed Curves | Collection of Curves

Apr 18, 24 01:36 AM

In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

4. ### Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

Apr 18, 24 12:31 AM

Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…