Division of Algebraic Fractions

To solve the problems on division of algebraic fractions we will follow the same rules that we already learnt in dividing fractions in arithmetic.

From division of fractions we know,

First fraction ÷ Second fraction = First fraction × \(\frac{1}{Second  fraction}\)

In algebraic fractions, the quotient can be determined in the same way i.e.

First algebraic fraction ÷ Second algebraic fraction

                               = First algebraic fraction × \(\frac{1}{Second   algebraic  fraction}\)


1. Determine the quotient of the algebraic fractions: \(\frac{p^{2}r^{2}}{q^{2}s^{2}} \div \frac{qr}{ps}\)

Solution:

\(\frac{p^{2}r^{2}}{q^{2}s^{2}} \div \frac{qr}{ps}\)

= \(\frac{p^{2}r^{2}}{q^{2}s^{2}} \times \frac{ps}{qr}\)

= \(\frac{p^{2}r^{2}  \cdot   ps}{q^{2}s^{2}  \cdot   qr}\)

= \(\frac{p^{3}r^{2}s}{q^{3}rs^{2}}\)

In the numerator and denominator of the quotient, the common factor is ‘rs’ by which if the numerator and denominator are divided, its lowest form will be = \(\frac{p^{3}r}{q^{3}s}\)


2. Find the quotient of the algebraic fractions: \(\frac{x(y  +  z)}{y^{2}  -  z^{2}} \div \frac{y  +  z}{y  -  z}\)

Solution:

\(\frac{x(y  +  z)}{y^{2}  -  z^{2}} \div \frac{y  +  z}{y  -  z}\)

= \(\frac{x(y  +  z)}{y^{2}  -  z^{2}} \times \frac{y  -  z}{y  +  z}\)

= \(\frac{x(y  +  z)}{(y  +  z)(y  -  z)} \times \frac{y  -  z}{y  +  z}\)

= \(\frac{x(y  +  z)  \cdot  (y  -  z)}{(y  +  z)(y  -  z)  \cdot  (y  +  z)}\)

= \(\frac{x(y  +  z)(y  -  z)}{(y  +  z)(y  -  z)(y  +  z)}\)

We observe that the common factor in the numerator and denominator of the quotient is (y + z) (y – z) by which, if the numerator and the denominator are divided, its lowest form will be \(\frac{x}{y   +  z}\).


3. Divide the algebraic fractions and express in the lowest form:

\(\frac{m^{2}  -  m  -  6}{m^{2}  +  4m  -  5} \div \frac{m^{2}  -  4m  +  3}{m^{2}  +  6m  +  5}\)

Solution:

\(\frac{m^{2}  -  m  -  6}{m^{2}  +  4m  -  5} \div \frac{m^{2}  -  4m  +  3}{m^{2}  +  6m  +  5}\)

= \(\frac{m^{2}  -  m  -  6}{m^{2}  +  4m  -  5} \times \frac{m^{2}  +  6m  +  5}{m^{2}  -  4m  +  3}\)

= \(\frac{m^{2}  -  3m  +  2m  -  6}{m^{2}  +  5m  -  m  -  5} \times \frac{m^{2}  +  5m  +  m  +  5}{m^{2}  -  3m  -  m  +  3}\)

= \(\frac{m(m  -  3)  +  2(m  -  3)}{m(m  +  5)  -  1(m  +  5)} \times \frac{m(m  +  5)  +  1(m  +  5)}{m(m  -  3)  -  1(m  -  3)}\)

= \(\frac{(m  -  3)(m  +  2)}{(m  +  5) (m  -  1)} \times \frac{(m  +  5) (m  +  1)}{(m  -  3) (m  -  1)}\)

= \(\frac{(m  -  3)(m  +  2)    \cdot   (m  +  5) (m  +  1)}{(m  +  5) (m  -  1)   \cdot    (m  -  3) (m  -  1)}\)

= \(\frac{(m  -  3)(m  +  2)(m  +  5) (m  +  1)}{(m  +  5) (m  -  1)(m  -  3) (m  -  1)}\)

We observe that the common factor in the numerator and denominator of the quotient is (m - 3) (m + 5), by which if the numerator and the denominator of the quotient is divided, \(\frac{(m  +  2) (m  +  1)}{(m  -  1) (m  -  1)}\) i.e. \(\frac{(m  +  2) (m  +  1)}{(m  -  1)^{2}}\) will be its reduced lowest form.







8th Grade Math Practice

From Division of Algebraic Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Basic Division Facts | Division is the Inverse of Multiplication |Math

    Nov 03, 24 12:50 PM

    Basic Division Facts
    Some basic division facts are needed to follow for dividing numbers. The repeated subtraction of the same number is expressed by division in short form and in long form.

    Read More

  2. Division of Two-Digit by a One-Digit Numbers | Dividing Larger Numbers

    Oct 29, 24 01:27 PM

    Divide 2-Digit Number by 1-Digit Number
    In division of two-digit by a one-digit numbers are discussed here step by step. How to divide 2-digit numbers by single-digit numbers?

    Read More

  3. 2nd Grade Multiplication Worksheet | 2-Digit by 1-Digit | 3-Digit by 1

    Oct 29, 24 12:21 AM

    Times Table Crossword
    In worksheet on 2nd grade multiplication worksheet we will solve the problems on fact about multiplication, multiplication on number line, terms used in multiplication, multiplication of 1-digit numbe…

    Read More

  4. Multiplication and Division are Related | Multiplication Fact|Division

    Oct 29, 24 12:06 AM

    Division and Multiplication are Related
    Does multiplication and division are related? Yes, multiplication and division both are related to each other. A few examples are given are given below to show how they are related to each other.

    Read More

  5. Divide on a Number Line | Various Division Problems | Solved Examples

    Oct 28, 24 12:53 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More