Division of Algebraic Fractions

To solve the problems on division of algebraic fractions we will follow the same rules that we already learnt in dividing fractions in arithmetic.

From division of fractions we know,

First fraction ÷ Second fraction = First fraction × \(\frac{1}{Second  fraction}\)

In algebraic fractions, the quotient can be determined in the same way i.e.

First algebraic fraction ÷ Second algebraic fraction

                               = First algebraic fraction × \(\frac{1}{Second   algebraic  fraction}\)


1. Determine the quotient of the algebraic fractions: \(\frac{p^{2}r^{2}}{q^{2}s^{2}} \div \frac{qr}{ps}\)

Solution:

\(\frac{p^{2}r^{2}}{q^{2}s^{2}} \div \frac{qr}{ps}\)

= \(\frac{p^{2}r^{2}}{q^{2}s^{2}} \times \frac{ps}{qr}\)

= \(\frac{p^{2}r^{2}  \cdot   ps}{q^{2}s^{2}  \cdot   qr}\)

= \(\frac{p^{3}r^{2}s}{q^{3}rs^{2}}\)

In the numerator and denominator of the quotient, the common factor is ‘rs’ by which if the numerator and denominator are divided, its lowest form will be = \(\frac{p^{3}r}{q^{3}s}\)


2. Find the quotient of the algebraic fractions: \(\frac{x(y  +  z)}{y^{2}  -  z^{2}} \div \frac{y  +  z}{y  -  z}\)

Solution:

\(\frac{x(y  +  z)}{y^{2}  -  z^{2}} \div \frac{y  +  z}{y  -  z}\)

= \(\frac{x(y  +  z)}{y^{2}  -  z^{2}} \times \frac{y  -  z}{y  +  z}\)

= \(\frac{x(y  +  z)}{(y  +  z)(y  -  z)} \times \frac{y  -  z}{y  +  z}\)

= \(\frac{x(y  +  z)  \cdot  (y  -  z)}{(y  +  z)(y  -  z)  \cdot  (y  +  z)}\)

= \(\frac{x(y  +  z)(y  -  z)}{(y  +  z)(y  -  z)(y  +  z)}\)

We observe that the common factor in the numerator and denominator of the quotient is (y + z) (y – z) by which, if the numerator and the denominator are divided, its lowest form will be \(\frac{x}{y   +  z}\).


3. Divide the algebraic fractions and express in the lowest form:

\(\frac{m^{2}  -  m  -  6}{m^{2}  +  4m  -  5} \div \frac{m^{2}  -  4m  +  3}{m^{2}  +  6m  +  5}\)

Solution:

\(\frac{m^{2}  -  m  -  6}{m^{2}  +  4m  -  5} \div \frac{m^{2}  -  4m  +  3}{m^{2}  +  6m  +  5}\)

= \(\frac{m^{2}  -  m  -  6}{m^{2}  +  4m  -  5} \times \frac{m^{2}  +  6m  +  5}{m^{2}  -  4m  +  3}\)

= \(\frac{m^{2}  -  3m  +  2m  -  6}{m^{2}  +  5m  -  m  -  5} \times \frac{m^{2}  +  5m  +  m  +  5}{m^{2}  -  3m  -  m  +  3}\)

= \(\frac{m(m  -  3)  +  2(m  -  3)}{m(m  +  5)  -  1(m  +  5)} \times \frac{m(m  +  5)  +  1(m  +  5)}{m(m  -  3)  -  1(m  -  3)}\)

= \(\frac{(m  -  3)(m  +  2)}{(m  +  5) (m  -  1)} \times \frac{(m  +  5) (m  +  1)}{(m  -  3) (m  -  1)}\)

= \(\frac{(m  -  3)(m  +  2)    \cdot   (m  +  5) (m  +  1)}{(m  +  5) (m  -  1)   \cdot    (m  -  3) (m  -  1)}\)

= \(\frac{(m  -  3)(m  +  2)(m  +  5) (m  +  1)}{(m  +  5) (m  -  1)(m  -  3) (m  -  1)}\)

We observe that the common factor in the numerator and denominator of the quotient is (m - 3) (m + 5), by which if the numerator and the denominator of the quotient is divided, \(\frac{(m  +  2) (m  +  1)}{(m  -  1) (m  -  1)}\) i.e. \(\frac{(m  +  2) (m  +  1)}{(m  -  1)^{2}}\) will be its reduced lowest form.







8th Grade Math Practice

From Division of Algebraic Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 09:20 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More