Subscribe to our YouTube channel for the latest videos, updates, and tips.


Divisibility Tests by 8 and 12

We will discuss here about the rules of divisibility tests by 8 and 12 with the help of different types of problems.

1. If ‘a’ is a positive perfect square integer, then a(a - 1) is always divisible by 

(a) 12

(b) multiple of 12

(c) 12 - x

(d) 24

Solution:

‘a’ is a positive perfect square integer.

Let, a = x2

Now, a (a – 1) = x2(x2 – 1)

Therefore, a(a – 1) is always divisible by 12

Answer: (a)

Note: x2(x2 – 1) is always divisible by 12 for any positive integral values of x.

 

2. If m and n are two digits of the number 653mn such that this number is divisible by 80, then (m + n) is equal to

(a) 2

(b) 3

(c) 4

(d) 6

Solution:

653xy is divisible by 80

Therefore, the values of y must be 0.

Now, 53x must be divisible by 8.

Therefore, the value of x = 6

Thus, the required sum of (x + y) = (6 + 0) = 6

Answer: (d)

Note: The number formed by last three digits when divisible by 8, then the number is divisible by 8.

 

3. The sum of first 45 natural numbers will be divisible by

(a) 21

(b) 23

(c) 44

(d) 46

Solution:

Number of natural numbers (n) is 45

Therefore, Sum of numbers divisible by 45 and 46 ÷ 2 = 23

Therefore, according to the given options the required number is 23.

Answer: (b)

Note: Sum of ‘n’ terms of natural numbers is always divisible by {n or n/2 or (n + 1) or (n + 1)/2} and also by the factors of n or (n + 1)

 

4. How many digits from the unit’s digit must be divisible by 32, to make the complete number is divisible by 32?

(a) 2

(b) 4

(c) 5

(d) None of these

Solution:

32 = 25

Therefore, required number of digits is 5

Answer: (c)

Note: Power of ‘2’ and ‘5’ indicate the number of digits from the unit’s digit to decide whether the number is divisible by what number.

 

5. If 4a3 + 984 = 13b7, which is divisible by 11, then find the value of (a + b)

(a) 8

(b) 9

(c) 10

(d) 11

Solution:

13b7 is divisible by 11

Therefore, (3 + 7) – (1 + b) = 0

Or, 10 – 1 + b = 0

Therefore, b = 9

Now, 4a3 + 984 = 1397

Thus, a = 9 – 8 = 1

Therefore, required values of (a + b) = (1 + 9) = 10

Answer: (c)




Math Employment Test Samples

From Divisibility Tests by 8 and 12 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More