Dividing a Quantity in Three given Ratios

Rules of dividing a quantity in three given ratios is explained below along with the different types of examples.

If a quantity K is divided into three parts in the ratio X : Y : Z, then

First part = X/(X + Y + Z) × K,

Second part = Y/(X + Y + Z) × K,

Third part = Z/(X + Y + Z) × K.

For example, suppose, we have to divide $ 1200 among X, Y, Z in the ratio 2 : 3 : 7. This means that if X gets 2 portions, then Y will get 3 portions and Z will get 7 portions. Thus, total portions = 2 + 3 + 7 = 12. So, we have to divide $ 1200 into 12 portions and then distribute the portions among X, Y, Z according to their share.

Thus, X will get 2/12 of $ 1200, i.e., 2/12 × 1200 = $ 200

Y will get 3/12 of $ 1200, i.e., 3/12 × 1200 = $ 300

Z will get 7/12 of $ 1200, i.e., 7/12 × 1200 = $ 700

Solved examples:

1. If $ 135 is divided among three boys in the ratio 2 : 3 : 4, find the share of each boy.

Solution:                 

The sum of the terms of the ratio = 2 + 3 + 4 = 9

Share of first boy = 2/9 × 135 = $ 30.

Share of second boy = 3/9 × 315 = $ 45.

Share of first boy = 4/9 × 315 = $ 60.

Thus, the required shares are $ 30, $ 45 and $ 60 respectively.


2. Divide 99 into three parts in the ratio 2 : 4 : 5.

Solution:

Since,  2 + 4 + 5 = 11.

Therefore, first part = 2/11 × 99 = 18.

Second part = 4/11 × 99 = 36.

And, third part = 5/11 × 99 = 45.


3. 420 articles are divided among A, B and C, such that A gets three-times of B and B gets five-times of C. Find the number of articles received by B.

Solution:

Let the number of articles C gets = 1

The number of article that B gets = five times of C = 5 × 1 = 5.

And, the number of articles that A gets = three times of B = 3 × 5 = 15.

Therefore, A : B : C = 15 : 5 : 1

And, A + B + C = 15 + 5 + 1 = 21

The number of articles received by B = 5/21 × 420 = 100

The above examples on dividing a quantity in three given ratios will help us to solve different types of problems on ratios.









6th Grade Page

From Dividing a Quantity in Three given Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More