Construction of Quadrilaterals

In construction of quadrilaterals we will learn how to construct a quadrilateral. We know that a quadrilateral has ten parts in all: four sides, four angles and two diagonals. To construct a quadrilateral, we shall need data about five specified parts of it.

We consider the following five cases and explain the construction in each case by an example. 

We divide the required quadrilateral into two triangles which can be easily constructed. 

These two triangles together will form a quadrilateral. 


I. Construction of quadrilaterals when four sides and one diagonal are given: 

1. Construct a quadrilateral ABCD in which AB = 4.8 cm, BC = 4.3 cm, CD = 3.6 cm, AD = 4.2 cm and diagonal AC = 6 cm. 

Solution:

Construction of Quadrilaterals

Solution:

First we draw a rough sketch of quadrilateral ABCD and write down its dimensions, as shown.

We may divide it into two triangles, namely ∆ABC and ∆ACD. (Rough Sketch) →


Steps of Construction:

Steps of Construction of Quadrilaterals

Step 1: Draw AB = 4.8 cm.

Step 2: With A as center and radius equal to 6 cm, draw an arc.

Step 3: With B as center and radius equal to 4.3 cm, draw another arc, cutting the previous arc at C.

Step4: Join BC.

Step 5: With A as center and radius equal to 4.2 cm, draw an arc.

Step 6: With C as center and radius equal to 3.6 cm, draw another arc, cutting the previous arc at D.

Step 7: Join AD and CD.

Then, ABCD is the required quadrilateral.


II. Construction of quadrilaterals when three sides and two diagonals are given:

2. Construct a quadrilateral ABCD in which AB = 4 cm BC = 3.8 cm, AD = 3 cm, diagonal AC = 5 cm and diagonal BD = 4.6 cm.

Construction of Quadrilaterals

Solution:

First we draw a rough sketch of quadrilateral ABCD and write down its dimensions, as shown.

We may divide it into two triangles, namely ∆ABC and ∆ABD. (Rough Sketch) →



Steps of Construction:

Steps of Construction of Quadrilaterals

Step 1: Draw AB = 4 cm.

Step 2: With A as center and radius equal to 5 cm, draw an arc.

Step 3: With B as center and radius equal to 3.8 cm, draw another arc, cutting the previous arc at C.

Step 4: Join BC.

Step 5: With A as center and radius equal to 3 cm, draw an arc.

Step 6: With B as center and radius equal to 4.6 cm draw another arc, cutting the previous arc at D.

Step 7: Join AD and CD.

Then, ABCD is the required quadrilateral.


III. Construction of quadrilaterals when three sides and two included angles are given: 

3. Construct a quadrilateral ABCD in which AB = 3.6 cm, ∠ABC = 80°, BC = 4 cm, ∠BAD = 120° and AD = 5 cm. 

Construction of Quadrilaterals

Solution:

First we draw a rough sketch of quadrilateral ABCD and write down its dimensions, as shown (Rough Sketch) →





Steps of Construction:

Steps of Construction of Quadrilaterals

Step 1: Draw AB = 3.6 cm.

Step 2: Make ∠ABX = 80°.

Step 3: With B as center and radius equal to 4 cm, draw an arc, cutting BX at C.

Step 4: Make ∠BAY = 120°.

Step 5: With A as center and 5 cm as radius, draw an arc, cutting AY at D. Step 6: Join CD.

Then, ABCD is the required quadrilateral.


IV. Construction of quadrilaterals when two adjacent sides and three angles are given:

4. Construct a quadrilateral PQRS in which PQ = 4.5 cm ∠PQR = 120°, QR = 3.8 cm, ∠QRS = 100° and ∠QPS = 60°.

Construction of Quadrilaterals

Solution:

First we draw a rough sketch of quadrilateral PQRS and write down its dimensions, as shown.
(Rough Sketch) →






Steps of Construction:

Steps of Construction of Quadrilaterals

Step 1: Draw PQ = 4.5 cm.

Step 2: Make ∠PQX = 120°.

Step 3: With Q as center and radius 3.8 cm, draw an arc, cutting QX at R. Join QR.

Step 4: Make ∠QRY = 100°.

Step 5: ∠QPZ = 60° so that PZ and RY intersect each other at the point S.

Then, PQRS is the required quadrilateral.



V. Construction of quadrilaterals when four sides and one angle are given:

5. Construct a quadrilateral ABCD in which AB = 3.8 cm, BC = 3.4cm, CD = 4.5 cm, AD = 5cm and ∠B = 80°.

Construction of Quadrilaterals

Solution:

First we draw a rough sketch of quadrilateral ABCD and write down its dimensions, as shown.
(Rough Sketch) →






Steps of Construction:

Steps of Construction of Quadrilaterals

Step 1: Draw AB = 3.8 cm.

Step 2: Make ∠ABX = 80°.

Step 3: From B, set off BC = 3.4 cm.

Step 4: With A as center and radius equal to 5 cm draw an arc.

Step 5: With C as center and radius equal to 4.5 cm, draw another arc, cutting the previous arc at D.

Step 5: Join AD and CD.

Then ABCD is the required quadrilateral.

 Related Concepts on Quadrilateral

 What is Quadrilateral?

 Different Types of Quadrilaterals

 Construction of Quadrilaterals

● Construct Different Types of Quadrilaterals


 Quadrilateral - Worksheets

 Quadrilateral Worksheet

 Worksheet on Construction on Quadrilateral

 Worksheet on Different Types of Quadrilaterals



8th Grade Math Practice

From Construction of Quadrilaterals to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More