Loading [MathJax]/jax/output/HTML-CSS/jax.js

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Complex Roots of a Quadratic Equation

We will discuss about the complex roots of a quadratic equation.

In a quadratic equation with real coefficients has a complex root α + iβ then it has also the conjugate complex root α - iβ.

Proof:

To prove the above theorem let us consider the quadratic equation of the general form:

ax2 + bx + c = 0 where, the coefficients a, b and c are real.

Let α + iβ (α, β are real and i = √-1) be a complex root of equation ax2 + bx + c = 0. Then the equation ax2 + bx + c = 0 must be satisfied by x = α + iβ.

Therefore,

a(α + iβ)2 + b(α + iβ) + c = 0

or, a(α2 - β2 + i 2 αβ) + bα + ibβ + c = 0, (Since, i2 = -1)

or, aα2 - aβ2 + 2iaαβ + bα + ibβ + c = 0,

or, aα2 - aβ2 + bα + c + i(2aαβ + bβ) = 0,

Therefore,

2 - aβ2 + bα + c = 0 and 2aαβ + bβ = 0

Since, p + iq = 0 (p, q are real and i = √-1) implies p = 0 and q = 0]

Now substitute x by α - iβ in ax2 + bx + c we get,

a(α - iβ)2 + b(α - iβ) + c

= a(α2 - β2 - i 2 αβ) + bα - ibβ + c, (Since, i2 = -1)

= aα2 - aβ2 - 2iaαβ + bα - ibβ + c,

= aα2 - aβ2 + bα + c - i(2aαβ + bβ)

= 0 - i 0 [Since, aα2 - aβ2 + bα + c = 0 and 2aαβ + bβ = 0]

= 0

Now we clearly see that the equation ax2 + bx + c = 0 is satisfied by x = (α - iβ) when (α + iβ) is a root of the equation. Therefore, (α - iβ) is the other complex root of the equation ax2 + bx + c = 0.

Similarly, if (α - iβ) is a complex root of equation ax2 + bx + c = 0 then we can easily proved that its other complex root is (α + iβ).

Thus, (α + iβ) and (α - iβ) are conjugate complex roots. Therefore, in a quadratic equation complex or imaginary roots occur in conjugate pairs.

 

Solved example to find the imaginary roots occur in conjugate pairs of a quadratic equation:

Find the quadratic equation with real coefficients which has 3 - 2i as a root (i = √-1).

Solution:

According to the problem, coefficients of the required quadratic equation are real and its one root is 3 - 2i. Hence, the other root of the required equation is 3 - 2i (Since, the complex roots always occur in pairs, so other root is 3 + 2i.

Now, the sum of the roots of the required equation = 3 - 2i + 3 + 2i = 6

And, product of the roots = (3 + 2i)(3 - 2i) = 32 - (2i)2 = 9 - 4i2 = 9 -4(-1) = 9 + 4 = 13

Hence, the equation is

x2 - (Sum of the roots)x + product of the roots = 0

i.e., x2 - 6x + 13 = 0

Therefore, the required equation is x2 - 6x + 13 = 0.





11 and 12 Grade Math 

From Complex Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More