Complex Roots of a Quadratic Equation

We will discuss about the complex roots of a quadratic equation.

In a quadratic equation with real coefficients has a complex root α + iβ then it has also the conjugate complex root α - iβ.

Proof:

To prove the above theorem let us consider the quadratic equation of the general form:

ax\(^{2}\) + bx + c = 0 where, the coefficients a, b and c are real.

Let α + iβ (α, β are real and i = √-1) be a complex root of equation ax\(^{2}\) + bx + c = 0. Then the equation ax\(^{2}\) + bx + c = 0 must be satisfied by x = α + iβ.

Therefore,

a(α + iβ)\(^{2}\) + b(α + iβ) + c = 0

or, a(α\(^{2}\) - β\(^{2}\) + i 2 αβ) + bα + ibβ + c = 0, (Since, i\(^{2}\) = -1)

or, aα\(^{2}\) - aβ\(^{2}\) + 2iaαβ + bα + ibβ + c = 0,

or, aα\(^{2}\) - aβ\(^{2}\) + bα + c + i(2aαβ + bβ) = 0,

Therefore,

aα\(^{2}\) - aβ\(^{2}\) + bα + c = 0 and 2aαβ + bβ = 0

Since, p + iq = 0 (p, q are real and i = √-1) implies p = 0 and q = 0]

Now substitute x by α - iβ in ax\(^{2}\) + bx + c we get,

a(α - iβ)\(^{2}\) + b(α - iβ) + c

= a(α\(^{2}\) - β\(^{2}\) - i 2 αβ) + bα - ibβ + c, (Since, i\(^{2}\) = -1)

= aα\(^{2}\) - aβ\(^{2}\) - 2iaαβ + bα - ibβ + c,

= aα\(^{2}\) - aβ\(^{2}\) + bα + c - i(2aαβ + bβ)

= 0 - i 0 [Since, aα\(^{2}\) - aβ\(^{2}\) + bα + c = 0 and 2aαβ + bβ = 0]

= 0

Now we clearly see that the equation ax\(^{2}\) + bx + c = 0 is satisfied by x = (α - iβ) when (α + iβ) is a root of the equation. Therefore, (α - iβ) is the other complex root of the equation ax\(^{2}\) + bx + c = 0.

Similarly, if (α - iβ) is a complex root of equation ax\(^{2}\) + bx + c = 0 then we can easily proved that its other complex root is (α + iβ).

Thus, (α + iβ) and (α - iβ) are conjugate complex roots. Therefore, in a quadratic equation complex or imaginary roots occur in conjugate pairs.

 

Solved example to find the imaginary roots occur in conjugate pairs of a quadratic equation:

Find the quadratic equation with real coefficients which has 3 - 2i as a root (i = √-1).

Solution:

According to the problem, coefficients of the required quadratic equation are real and its one root is 3 - 2i. Hence, the other root of the required equation is 3 - 2i (Since, the complex roots always occur in pairs, so other root is 3 + 2i.

Now, the sum of the roots of the required equation = 3 - 2i + 3 + 2i = 6

And, product of the roots = (3 + 2i)(3 - 2i) = 3\(^{2}\) - (2i)\(^{2}\) = 9 - 4i\(^{2}\) = 9 -4(-1) = 9 + 4 = 13

Hence, the equation is

x\(^{2}\) - (Sum of the roots)x + product of the roots = 0

i.e., x\(^{2}\) - 6x + 13 = 0

Therefore, the required equation is x\(^{2}\) - 6x + 13 = 0.





11 and 12 Grade Math 

From Complex Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More