Complex Numbers Formulae

We will discuss about the complex numbers formulae.

1. Definition of complex number: If an ordered pair (x, y) of two real numbers x and y is represented by the symbol x + iy, where i = √-1, then the order pair is called a complex number or an imaginary number. If z = x + iy then x is called the real part of the complex number z and y is called its imaginary part.

2. Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be any two complex numbers, then their sum z\(_{1}\) + z\(_{2}\) is defined as

z\(_{1}\) + z\(_{2}\) = (p + r) + i(q + s).


3. Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be any two complex numbers, then the subtraction of z\(_{2}\) from z\(_{1}\) is defined as

z\(_{1}\) - z\(_{2}\) = z\(_{1}\) + (-z\(_{2}\))

= (p + iq) + (-r - is)

= (p - r) + i(q - s)


4. Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be two complex numbers (p, q, r and s are real), then their product z\(_{1}\)z\(_{2}\) is defined as

z\(_{1}\)z\(_{2}\) = (pr - qs) + i(ps + qr).


5. Division of a complex number z\(_{1}\) = p + iq by z\(_{2}\) = r + is ≠ 0 is defined as

\(\frac{z_{1}}{z_{2}}\) = \(\frac{pr + qs}{\sqrt{r^{2} + s^{2}}}\) + i\(\frac{qr - ps}{\sqrt{r^{2} + s^{2}}}\)


6. In any two complex numbers, if only the sign of the imaginary part differ then, they are known as complex conjugate of each other. If x, y are real and i = √-1 then the complex numbers x + iy and x - iy are said to be conjugate of each other; conjugate of complex number z is denoted by \(\overline{z}\).

7. Modulus of a complex number z = x + iy, denoted by mod(z) or |z| or |x + iy|, is defined as |z|[or mod z or |x + iy|] = + \(\sqrt{x^{2} + y^{2}}\) ,where a = Re(z), b = Im(z)

If z = x + iy then the positive root of (x\(^{2}\)+ y \(^{2}\)) is called the modulus or absolute value of z and is denoted by |z| or mod z. Thus, if z = x + iy then, |z| = \(\sqrt{x^{2} + y^{2}}\).

Again, if z = x + iy then the unique value of θ satisfying x = |z| cos θ, y = |z| sin θ and - π < θ ≤ π is called the principal value of argument (or amplitude) of z and is denoted by arg z or amp z. If the point p(z) in the Argand Diagram represents the complex number z = (x, y) = x + iy and agr z = θ then

(i) 0 < θ < \(\frac{π}{2}\) when P lies on the first quadrant;

(ii) \(\frac{π}{2}\) < θ < π when P lies on the second quadrant;

(iii) - π < θ < - \(\frac{π}{2}\) when P lies on the third quadrant;

(iv) - \(\frac{π}{2}\) < θ < 0 when P lies on the fourth quadrant.


8. z = r(cos θ + i sin θ) where r = |z| and θ = are z, - π < θ < π, is called the modulus-amplitude form of the complex number z.

9. When a, b are real numbers and a + ib = 0 then a = 0, b = 0

10. When a, b, c and d are real numbers and a + ib = c + id then a = c and b = d.

11. i = √-1; i\(^{2}\)  = - 1; i\(^{3}\) = -i; i\(^{4}\) = 1. Any integral power of i is i or (-i) or 1.

12. |z\(_{1}\) + z\(_{2}\) | ≤|z\(_{1}\)| + |z\(_{2}\)|, for two complex numbers z\(_{1}\) and z\(_{2}\).

13. |z\(_{1}\)z\(_{2}\)| = |z\(_{1}\)| |z\(_{2}\)|, for two complex numbers z\(_{1}\) and z\(_{2}\).

14. |\(\frac{z_{1}}{z_{2}}\)| = \(\frac{|z_{1}|}{|z_{2}|}\), for two complex numbers z\(_{1}\) and z\(_{2}\).

15. (a) arg (z\(_{1}\)z\(_{2}\)) = arg z\(_{1}\) -  agr z\(_{2}\) + m, for two complex numbers z\(_{1}\) and z\(_{2}\), Where m = 0 or, 2π or, (-2π).

(b) arg (\(\frac{z_{1}}{z_{2}}\)) = arg z\(_{1}\) -  agr z\(_{2}\) + m, for two complex numbers z\(_{1}\) and z\(_{2}\), Where m = 0 or, 2π or, (-2π).


16. The sum of two conjugate complex numbers is real.

17. The product of two conjugate complex numbers is real.

18. When the sum of two complex numbers is real and the product of two complex numbers is also real then the complex numbers are conjugate to each other.

19. Cube roots of 1 are 1, ω, ω\(^{2}\) where

ω = \(\frac{-1 + \sqrt{3}i}{2}\) or, \(\frac{-1 - \sqrt{3}i}{2}\);

here ω and ω\(^{2}\) are called the imaginary cube roots of 1.


20. The multiplicative inverse of a non-zero complex z is equal to its reciprocal and is represent as

\(\frac{Re(z)}{|z|^{2}}\) + i\(\frac{(-Im(z))}{|z|^{2}}\)= \(\frac{\overline{z}}{|z|^{2}}\)

21. If ω be an imaginary cube root of unity then ω\(^{3}\) = 1 and 1 + ω + ω\(^{2}\) = 0.






11 and 12 Grade Math 

From Complex Numbers Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 27, 25 03:02 AM

    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. 5th Grade Math Worksheets | 5th Grade Homework Sheets | Math Worksheet

    Mar 27, 25 02:46 AM

    5th grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 5th Grade Relation Between HCF and LCM | Solved Examples | Worksheet

    Mar 27, 25 02:34 AM

    Here we will discuss about the relationship between hcf and lcm of two numbers. Product of two numbers = Product of H.C.F. and L.C.M. of the numbers. Solved Examples on 5th Grade Relation Between HCF…

    Read More

  4. 5th Grade Word Problems on H.C.F. and L.C.M. | Worksheet with Answers

    Mar 27, 25 02:33 AM

    L.C.M. of 8, 24 and 32 by Long Division Method
    Here we will solve different types of word Problems on H.C.F. and L.C.M. Find the smallest number which when divided by 8, 24 and 32 when leaves 7 as remainder in each. 1. Find the lowest number which…

    Read More

  5. Divisible by 3 | Test of Divisibility by 3 |Rules of Divisibility by 3

    Mar 26, 25 11:08 AM

    Divisible by 3
    A number is divisible by 3, if the sum of its all digits is a multiple of 3 or divisibility by 3. Consider the following numbers to find whether the numbers are divisible or not divisible by 3: (i) 54…

    Read More