Complex Numbers Formulae

We will discuss about the complex numbers formulae.

1. Definition of complex number: If an ordered pair (x, y) of two real numbers x and y is represented by the symbol x + iy, where i = √-1, then the order pair is called a complex number or an imaginary number. If z = x + iy then x is called the real part of the complex number z and y is called its imaginary part.

2. Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be any two complex numbers, then their sum z\(_{1}\) + z\(_{2}\) is defined as

z\(_{1}\) + z\(_{2}\) = (p + r) + i(q + s).


3. Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be any two complex numbers, then the subtraction of z\(_{2}\) from z\(_{1}\) is defined as

z\(_{1}\) - z\(_{2}\) = z\(_{1}\) + (-z\(_{2}\))

= (p + iq) + (-r - is)

= (p - r) + i(q - s)


4. Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be two complex numbers (p, q, r and s are real), then their product z\(_{1}\)z\(_{2}\) is defined as

z\(_{1}\)z\(_{2}\) = (pr - qs) + i(ps + qr).


5. Division of a complex number z\(_{1}\) = p + iq by z\(_{2}\) = r + is ≠ 0 is defined as

\(\frac{z_{1}}{z_{2}}\) = \(\frac{pr + qs}{\sqrt{r^{2} + s^{2}}}\) + i\(\frac{qr - ps}{\sqrt{r^{2} + s^{2}}}\)


6. In any two complex numbers, if only the sign of the imaginary part differ then, they are known as complex conjugate of each other. If x, y are real and i = √-1 then the complex numbers x + iy and x - iy are said to be conjugate of each other; conjugate of complex number z is denoted by \(\overline{z}\).

7. Modulus of a complex number z = x + iy, denoted by mod(z) or |z| or |x + iy|, is defined as |z|[or mod z or |x + iy|] = + \(\sqrt{x^{2} + y^{2}}\) ,where a = Re(z), b = Im(z)

If z = x + iy then the positive root of (x\(^{2}\)+ y \(^{2}\)) is called the modulus or absolute value of z and is denoted by |z| or mod z. Thus, if z = x + iy then, |z| = \(\sqrt{x^{2} + y^{2}}\).

Again, if z = x + iy then the unique value of θ satisfying x = |z| cos θ, y = |z| sin θ and - π < θ ≤ π is called the principal value of argument (or amplitude) of z and is denoted by arg z or amp z. If the point p(z) in the Argand Diagram represents the complex number z = (x, y) = x + iy and agr z = θ then

(i) 0 < θ < \(\frac{π}{2}\) when P lies on the first quadrant;

(ii) \(\frac{π}{2}\) < θ < π when P lies on the second quadrant;

(iii) - π < θ < - \(\frac{π}{2}\) when P lies on the third quadrant;

(iv) - \(\frac{π}{2}\) < θ < 0 when P lies on the fourth quadrant.


8. z = r(cos θ + i sin θ) where r = |z| and θ = are z, - π < θ < π, is called the modulus-amplitude form of the complex number z.

9. When a, b are real numbers and a + ib = 0 then a = 0, b = 0

10. When a, b, c and d are real numbers and a + ib = c + id then a = c and b = d.

11. i = √-1; i\(^{2}\)  = - 1; i\(^{3}\) = -i; i\(^{4}\) = 1. Any integral power of i is i or (-i) or 1.

12. |z\(_{1}\) + z\(_{2}\) | ≤|z\(_{1}\)| + |z\(_{2}\)|, for two complex numbers z\(_{1}\) and z\(_{2}\).

13. |z\(_{1}\)z\(_{2}\)| = |z\(_{1}\)| |z\(_{2}\)|, for two complex numbers z\(_{1}\) and z\(_{2}\).

14. |\(\frac{z_{1}}{z_{2}}\)| = \(\frac{|z_{1}|}{|z_{2}|}\), for two complex numbers z\(_{1}\) and z\(_{2}\).

15. (a) arg (z\(_{1}\)z\(_{2}\)) = arg z\(_{1}\) -  agr z\(_{2}\) + m, for two complex numbers z\(_{1}\) and z\(_{2}\), Where m = 0 or, 2π or, (-2π).

(b) arg (\(\frac{z_{1}}{z_{2}}\)) = arg z\(_{1}\) -  agr z\(_{2}\) + m, for two complex numbers z\(_{1}\) and z\(_{2}\), Where m = 0 or, 2π or, (-2π).


16. The sum of two conjugate complex numbers is real.

17. The product of two conjugate complex numbers is real.

18. When the sum of two complex numbers is real and the product of two complex numbers is also real then the complex numbers are conjugate to each other.

19. Cube roots of 1 are 1, ω, ω\(^{2}\) where

ω = \(\frac{-1 + \sqrt{3}i}{2}\) or, \(\frac{-1 - \sqrt{3}i}{2}\);

here ω and ω\(^{2}\) are called the imaginary cube roots of 1.


20. The multiplicative inverse of a non-zero complex z is equal to its reciprocal and is represent as

\(\frac{Re(z)}{|z|^{2}}\) + i\(\frac{(-Im(z))}{|z|^{2}}\)= \(\frac{\overline{z}}{|z|^{2}}\)

21. If ω be an imaginary cube root of unity then ω\(^{3}\) = 1 and 1 + ω + ω\(^{2}\) = 0.






11 and 12 Grade Math 

From Complex Numbers Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  2. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  3. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More