Commutative Property of Multiplication of Complex Numbers

Here we will discuss about the commutative property of multiplication of complex numbers.

Commutative property of multiplication of two complex numbers:

For any two complex number z\(_{1}\) and z\(_{2}\), we have z\(_{1}\)z\(_{2}\) = z\(_{2}\)z\(_{1}\).

Proof:

Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is, where p, q, r and s are real numbers. Them

z\(_{1}\)z\(_{2}\) = (p + iq)(r + is) = (pr - qs) + i(ps - rq)

and z\(_{2}\)z\(_{1}\) = (r + is) (p + iq) = (rp - sq) + i(sp - qr)

             = (pr - qs) + i(ps - rq), [Using the commutative of multiplication of real numbers]

Therefore, z\(_{1}\)z\(_{2}\) = z\(_{2}\)z\(_{1}\)

Thus, z\(_{1}\)z\(_{2}\) = z\(_{2}\)z\(_{1}\) for all z\(_{1}\), z\(_{2}\) ϵ C.

Hence, the multiplication of complex numbers is commutative on C.

Examples on commutative property of multiplication of two complex numbers:

1. Show that multiplication of two complex numbers (2 + 3i) and (3 + 4i) is commutative.

Solution:

Let, z\(_{1}\) = (2 + 3i) and z\(_{2}\) = (3 + 4i)

Now, z\(_{1}\)z\(_{2}\) = (2 + 3i)(3 + 4i)

= (2 3 - 3 4) + (2 4 + 3 3)i

= (6 - 12) + (8 + 9)i

= - 6 + 17i

Again, z\(_{2}\)z\(_{1}\) = (3 + 4i)(2 + 3i)

= (3 2 - 4 3) + (3 3 + 2 4)i

= (6 - 12) + (9 + 8)i

= -6 + 17i

Therefore, z\(_{1}\)z\(_{2}\) = z\(_{2}\)z\(_{1}\)

Thus, z\(_{1}\)z\(_{2}\) = z\(_{2}\)z\(_{1}\) for all z\(_{1}\), z2 ϵ C.

Hence, the multiplication of two complex numbers (2 + 3i) and (3 + 4i) is commutative.

 

2. Show that multiplication of two complex numbers (3 - 2i) and (-5 + 4i) is commutative.

Solution:

Let, z\(_{1}\) = (3 - 2i) and z\(_{2}\) = (-5 + 4i)

Now, z\(_{1}\)z\(_{2}\) = (3 - 2i)(-5 + 4i)

= (3 (-5) - (-2) 4) + ((-2) 4 + (-5) (-2))i

= (-15 - (-8)) + ((-8) + 10)i

= (-15 + 8) + (-8 + 10)i

= - 7 + 2i

Again, z\(_{2}\)z\(_{1}\) = (-5 + 4i)(3 - 2i)

= ((-5) 3 - 4 (-2)) + (4 3 + (-2) 4)i

= (-15 + 8) + (12 - 8)i

= -7 + 2i

Therefore, z\(_{1}\)z\(_{2}\) = z\(_{2}\)z\(_{1}\)

Thus, z\(_{1}\)z\(_{2}\) = z\(_{2}\)z\(_{1}\) for all z\(_{1}\), z\(_{2}\) ϵ C.

Hence, the multiplication of two complex numbers (3 - 2i) and (-5 + 4i) is commutative.




11 and 12 Grade Math 

From Commutative Property of Multiplication of Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Oct 22, 24 03:26 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  2. Word Problems on Multiplication |Multiplication Word Problem Worksheet

    Oct 22, 24 01:23 AM

    Multiplication Word Problem
    Word problems on multiplication for fourth grade students are solved here step by step. Problem Sums Involving Multiplication: 1. 24 folders each has 56 sheets of paper inside them. How many sheets of…

    Read More

  3. Worksheet on Word Problems on Multiplication | Multiplication Problems

    Oct 22, 24 12:31 AM

    In worksheet on word problems on multiplication, all grade students can practice the questions on word problems involving multiplication. This exercise sheet on word problems on multiplication

    Read More

  4. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Oct 21, 24 03:38 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Oct 21, 24 02:26 AM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More