Application Problems on Expansion of Powers of Binomials and Trinomials

Here we will solve different types of application problems on expansion of powers of binomials and trinomials.

1. Use (x ± y)\(^{2}\) = x\(^{2}\) ± 2xy + y\(^{2}\) to evaluate (2.05)\(^{2}\).

Solution:

(2.05)\(^{2}\)

= (2 + 0.05)\(^{2}\)

= 2\(^{2}\) + 2 × 2 × 0.05 + (0.05)\(^{2}\)

= 4 + 0.20 + 0.0025

= 4.2025.

2. Use (x ± y)\(^{2}\) = x\(^{2}\) ± 2xy + y\(^{2}\) to evaluate (5.94)\(^{2}\).

Solution:

(5.94)\(^{2}\)

= (6 – 0.06)\(^{2}\)

= 6\(^{2}\) – 2 × 6 × 0.06 + (0.06)\(^{2}\)

= 36 – 0.72 + 0.0036

= 36.7236.


3. Evaluate 149 × 151 using (x + y)(x - y) = x\(^{2}\) - y\(^{2}\)

Solution:

149 × 151

= (150 - 1)(150 + 1)

= 150\(^{2}\) - 1\(^{2}\)

= 22500 - 1

= 22499


4. Evaluate 3.99 × 4.01 using (x + y)(x - y) = x\(^{2}\) - y\(^{2}\).

Solution:

3.99 × 4.01

= (4 – 0.01)(4 + 0.01)

= 4\(^{2}\) - (0.01)\(^{2}\)

= 16 - 0.0001

= 15.9999


5. If the sum of two numbers x and y is 10 and the sum of their squares is 52, find the product of the numbers.

Solution:

According to the problem, sum of two numbers x and y is 10

i.e., x + y = 10 and

Sum of the two numbers x and y squares is 52

i.e., x\(^{2}\) + y\(^{2}\) = 52

We know that, 2ab = (a + b)\(^{2}\) – (a\(^{2}\) + b\(^{2}\))

Therefore, 2xy = (x + y)\(^{2}\) - (x\(^{2}\) + y\(^{2}\))

           ⟹ 2xy = 10\(^{2}\) - 52

           ⟹ 2xy = 100 - 52

           ⟹ 2xy = 48

Therefore, xy = \(\frac{1}{2}\) × 2xy

                    = \(\frac{1}{2}\) × 48

                    = 24.


6. If the sum of three numbers p, q, r is 6 and the sum of their squares is 14 then find the sum of the products of the three numbers taking two at a time.

Solution:

According to the problem, sum of three numbers p, q, r is 6.

i.e., p + q + r = 6 and

Sum of the three numbers p, q, r squares is 14

i.e., p\(^{2}\) + q\(^{2}\)+ r\(^{2}\)= 14

Here we need to find the value of pq + qr + rp

We know that, (a + b + c)\(^{2}\) = a\(^{2}\) + b\(^{2}\) + c\(^{2}\) + 2(ab + bc + ca).

Therefore, (p + q + r)\(^{2}\) = p\(^{2}\) + q\(^{2}\) + r\(^{2}\) + 2(pq + qr + rp).

⟹ (p + q + r)\(^{2}\) - (p\(^{2}\) + q\(^{2}\) + r\(^{2}\)) = 2(pq + qr + rp).

⟹ 6\(^{2}\) - 14 = 2(pq + qr + rp).

⟹ 36 – 14 = 2(pq + qr + rp).

⟹ 22 = 2(pq + qr + rp).

⟹ pq + qr + rp = \(\frac{22}{2}\)

Therefore, pq + qr + rp = 11.


7. Evaluate: (3.29)\(^{3}\) + (6.71)\(^{3}\)

Solution:

We know, a\(^{3}\) + b\(^{3}\) = (a + b) \(^{3}\) – 3ab(a + b)

Therefore, (3.29)\(^{3}\) + (6.71)\(^{3}\)

= (3.29 + 6.71)\(^{3}\) – 3 × 3.29 × 6.71(3.29 + 6.71)

= 10\(^{3}\) – 3 × 3.29 × 6.71 × 10

= 1000 - 3 × 220.759

= 1000 – 662.277

= 337.723


14. If the sum of two numbers is 9 and the sum of their cubes is 189, find the sum of their squares.

Solution:

Let a, b are the two numbers

According to the problem, sum of two numbers is 9

 i.e., a + b = 9 and

Sum of their cubes is 189

i.e., a\(^{3}\) + b\(^{3}\) = 189

Now a\(^{3}\) + b\(^{3}\) = (a + b) \(^{3}\) – 3ab(a + b).

Therefore, 9\(^{3}\) – 189 = 3ab × 9.

Therefore, 27ab = 729 – 189 = 540.

Therefore, ab = \(\frac{540}{27}\) = 20.

Now, a\(^{2}\) + b\(^{2}\) = (a + b)\(^{2}\) – 2ab

                                           = 9\(^{2}\) – 2 × 20

                                           = 81 – 40

                                           = 41.

Therefore, the sum of the squares of the numbers is 41.





9th Grade Math

From Application Problems on Expansion of Powers of Binomials and Trinomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More