Application Problems on Expansion of Powers of Binomials and Trinomials

Here we will solve different types of application problems on expansion of powers of binomials and trinomials.

1. Use (x ± y)\(^{2}\) = x\(^{2}\) ± 2xy + y\(^{2}\) to evaluate (2.05)\(^{2}\).

Solution:

(2.05)\(^{2}\)

= (2 + 0.05)\(^{2}\)

= 2\(^{2}\) + 2 × 2 × 0.05 + (0.05)\(^{2}\)

= 4 + 0.20 + 0.0025

= 4.2025.

2. Use (x ± y)\(^{2}\) = x\(^{2}\) ± 2xy + y\(^{2}\) to evaluate (5.94)\(^{2}\).

Solution:

(5.94)\(^{2}\)

= (6 – 0.06)\(^{2}\)

= 6\(^{2}\) – 2 × 6 × 0.06 + (0.06)\(^{2}\)

= 36 – 0.72 + 0.0036

= 36.7236.


3. Evaluate 149 × 151 using (x + y)(x - y) = x\(^{2}\) - y\(^{2}\)

Solution:

149 × 151

= (150 - 1)(150 + 1)

= 150\(^{2}\) - 1\(^{2}\)

= 22500 - 1

= 22499


4. Evaluate 3.99 × 4.01 using (x + y)(x - y) = x\(^{2}\) - y\(^{2}\).

Solution:

3.99 × 4.01

= (4 – 0.01)(4 + 0.01)

= 4\(^{2}\) - (0.01)\(^{2}\)

= 16 - 0.0001

= 15.9999


5. If the sum of two numbers x and y is 10 and the sum of their squares is 52, find the product of the numbers.

Solution:

According to the problem, sum of two numbers x and y is 10

i.e., x + y = 10 and

Sum of the two numbers x and y squares is 52

i.e., x\(^{2}\) + y\(^{2}\) = 52

We know that, 2ab = (a + b)\(^{2}\) – (a\(^{2}\) + b\(^{2}\))

Therefore, 2xy = (x + y)\(^{2}\) - (x\(^{2}\) + y\(^{2}\))

           ⟹ 2xy = 10\(^{2}\) - 52

           ⟹ 2xy = 100 - 52

           ⟹ 2xy = 48

Therefore, xy = \(\frac{1}{2}\) × 2xy

                    = \(\frac{1}{2}\) × 48

                    = 24.


6. If the sum of three numbers p, q, r is 6 and the sum of their squares is 14 then find the sum of the products of the three numbers taking two at a time.

Solution:

According to the problem, sum of three numbers p, q, r is 6.

i.e., p + q + r = 6 and

Sum of the three numbers p, q, r squares is 14

i.e., p\(^{2}\) + q\(^{2}\)+ r\(^{2}\)= 14

Here we need to find the value of pq + qr + rp

We know that, (a + b + c)\(^{2}\) = a\(^{2}\) + b\(^{2}\) + c\(^{2}\) + 2(ab + bc + ca).

Therefore, (p + q + r)\(^{2}\) = p\(^{2}\) + q\(^{2}\) + r\(^{2}\) + 2(pq + qr + rp).

⟹ (p + q + r)\(^{2}\) - (p\(^{2}\) + q\(^{2}\) + r\(^{2}\)) = 2(pq + qr + rp).

⟹ 6\(^{2}\) - 14 = 2(pq + qr + rp).

⟹ 36 – 14 = 2(pq + qr + rp).

⟹ 22 = 2(pq + qr + rp).

⟹ pq + qr + rp = \(\frac{22}{2}\)

Therefore, pq + qr + rp = 11.


7. Evaluate: (3.29)\(^{3}\) + (6.71)\(^{3}\)

Solution:

We know, a\(^{3}\) + b\(^{3}\) = (a + b) \(^{3}\) – 3ab(a + b)

Therefore, (3.29)\(^{3}\) + (6.71)\(^{3}\)

= (3.29 + 6.71)\(^{3}\) – 3 × 3.29 × 6.71(3.29 + 6.71)

= 10\(^{3}\) – 3 × 3.29 × 6.71 × 10

= 1000 - 3 × 220.759

= 1000 – 662.277

= 337.723


14. If the sum of two numbers is 9 and the sum of their cubes is 189, find the sum of their squares.

Solution:

Let a, b are the two numbers

According to the problem, sum of two numbers is 9

 i.e., a + b = 9 and

Sum of their cubes is 189

i.e., a\(^{3}\) + b\(^{3}\) = 189

Now a\(^{3}\) + b\(^{3}\) = (a + b) \(^{3}\) – 3ab(a + b).

Therefore, 9\(^{3}\) – 189 = 3ab × 9.

Therefore, 27ab = 729 – 189 = 540.

Therefore, ab = \(\frac{540}{27}\) = 20.

Now, a\(^{2}\) + b\(^{2}\) = (a + b)\(^{2}\) – 2ab

                                           = 9\(^{2}\) – 2 × 20

                                           = 81 – 40

                                           = 41.

Therefore, the sum of the squares of the numbers is 41.





9th Grade Math

From Application Problems on Expansion of Powers of Binomials and Trinomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  2. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More

  3. Mental Math on Geometrical Shapes | Geometry Worksheets| Answer

    Apr 24, 24 03:35 PM

    In mental math on geometrical shapes we will solve different type of problems on simple closed curves, polygons, basic geometrical concepts, perpendicular lines, parallel lines, circle, terms relates…

    Read More

  4. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 24, 24 02:57 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  5. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 24, 24 12:38 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More