Subscribe to our YouTube channel for the latest videos, updates, and tips.


Application of Congruency of Triangles

Here we will prove some Application of congruency of triangles.

1. PQRS is a rectangle and POQ an equilateral triangle. Prove that SRO is an isosceles triangle.

Application of Congruency of Triangles

Solution:


Given:

PQRS is a rectangle. POQ is an equilateral triangle to prove ∆SOR is an isosceles triangle.

Proof:

          Statement

          Reason

1. ∠SPQ = 90°

1. Each angle of a rectangle is 90°

2. ∠OPQ = 60°

2. Each angle of an equilateral triangle is 60°

3. ∠SPO = ∠SPQ - ∠OPQ = 90° - 60° = 30°

3. Using statements 1 and 2.

4. Similarly, ∠RQO = 30°

4. Proceeding as above.

5. In ∆POS and ∆QOR, 

(i) PO = QO 

(ii) PS = QR

(iii) ∠SPO = ∠RQO = 30°

5. 

(i) Sides of an equilateral triangle are equal.

(ii) Opposite sides of a rectangle are equal.

(iii) From statements 3 and 4.

6. ∆POS ≅ ∆QOR

6. By SAS criterion of congruency.

7. SO = RO

7. CPCTC.

8. ∆SOR is an isosceles triangle. (Proved)

8. From statement 7.


2. In the given figure, triangle XYZ is a right angled at Y. XMNZ and YOPZ are squares. Prove that XP = YN.

Congruency of Triangles Problem

Solution:

Given:

In ∆XYZ, ∠Y = 90°, XMNZ and YOPZ are squares.

To prove: XP = YN

Proof:

          Statement

          Reason

1. ∠XZN = 90°

1. Angle of square XMNZ.

2. ∠YZN = ∠YZX  + ∠XZN = x° + 90°

2. Using statement 1.

3. ∠YZP = 90°

3. Angle of square YOPZ.

4.  ∠XZP = ∠XZY + ∠YZP = x° + 90°

4. Using statement 3.

5. In ∆XZP and ∆YZN,

(i) ∠XZP = ∠YZN

(ii) ZP = YZ

(iii) XZ = ZN

5.

(i) Using statements 2 and 4.

(ii) Sides of square YOPZ.

(iii) Sides of square XMNZ.

6.  ∆XZP ≅ ∆YZN

6. By SAS criterion of congruency.

7. XP = YN. (Proved)

7. CPCTC.





9th Grade Math

From Application of Congruency of Triangles  to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 09, 25 02:37 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More