Addition of Two Complex Numbers

We will discuss here about the usual mathematical operation - addition of two complex numbers.

How do you add Complex Numbers?

Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be any two complex numbers, then their sum z\(_{1}\) + z\(_{2}\) is defined as

z\(_{1}\) + z\(_{2}\) = (p + r) + i(q + s).

For example, let z\(_{1}\) = 2 + 8i and z\(_{2}\) = -7 + 5i, then

z\(_{1}\) + z\(_{2}\) = (2 + (-7)) + (8 + 5)i = -5 + 13i.


If z\(_{1}\), z\(_{2}\), z\(_{3}\) are any complex numbers, then it is easy to see that

(i) z\(_{1}\) + z\(_{2}\) = z\(_{2}\) + z\(_{1}\)             (Commutative law)

(ii) (z\(_{1}\) + z2) + z\(_{3}\) = z\(_{1}\) + (z\(_{2}\) + z\(_{3}\)), (Associative law)

(iii) z + 0 = z = 0 + z, so o acts as the additive identity for the set of complex numbers.

Negative of a complex number:

For a complex number, z = x + iy, the negative is defined as -z = (-x) + i(-y) = -x - iy.

Note that z + (-z) = (x - x) + i(y - y) = 0 + i0 = 0.

Thus, -z acts as the additive inverse of z.


Solved examples on addition of two complex numbers:

1. Find the addition of two complex numbers (2 + 3i) and (-9 - 2i).

Solution:

(2 + 3i) + (-9 - 2i)

= 2 + 3i - 9 - 2i

= 2 - 9 + 3i - 2i

= -7 + i

 

2. Evaluate: (2√3 + 5i) + (√3 - 7i)

Solution:

2√3 + 5i + √3 - 7i

= 2√3 + √3 + 5i - 7i

= 3√3 - 2i

 

3. Express the complex number (1 - i) + (-1 + 6i) in the standard form a + ib.

Solution:

(1 - i) + (-1 + 6i)

= 1 - i -1 + 6i

= 1 - 1 - i + 6i

= 0 + 5i, which is the required form.


Note: The final answer of addition of two complex numbers must be in simplest or standard form a + ib.







11 and 12 Grade Math 

From Addition of Two Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    Jan 17, 25 12:34 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Multiplying 2-Digit Numbers by 2-Digit Numbers |Multiplying by 2-Digit

    Jan 17, 25 01:46 AM

    Multiplying 2-Digit Numbers by 2-Digit Numbers
    We will learn how to multiply 2-digit numbers by 2-digit numbers.

    Read More

  3. Multiplying 3-Digit Numbers by 2-Digit Numbers | 3-Digit by 2-Digit

    Jan 17, 25 01:17 AM

    Multiplying 3-Digit Numbers by 2-Digit Numbers
    "We will learn how to multiply 3-digit numbers by 2-digit numbers.

    Read More

  4. 4-Digits by 1-Digit Multiplication |Multiply 4-Digit by 1-Digit Number

    Jan 17, 25 12:01 AM

    4-Digit by 1-Digit Multiply
    Here we will learn 4-digits by 1-digit multiplication. We know how to multiply three digit number by one digit number. In the same way we can multiply 4-digit numbers by 1-digit numbers without regrou…

    Read More

  5. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More