Addition of Two Complex Numbers

We will discuss here about the usual mathematical operation - addition of two complex numbers.

How do you add Complex Numbers?

Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be any two complex numbers, then their sum z\(_{1}\) + z\(_{2}\) is defined as

z\(_{1}\) + z\(_{2}\) = (p + r) + i(q + s).

For example, let z\(_{1}\) = 2 + 8i and z\(_{2}\) = -7 + 5i, then

z\(_{1}\) + z\(_{2}\) = (2 + (-7)) + (8 + 5)i = -5 + 13i.


If z\(_{1}\), z\(_{2}\), z\(_{3}\) are any complex numbers, then it is easy to see that

(i) z\(_{1}\) + z\(_{2}\) = z\(_{2}\) + z\(_{1}\)             (Commutative law)

(ii) (z\(_{1}\) + z2) + z\(_{3}\) = z\(_{1}\) + (z\(_{2}\) + z\(_{3}\)), (Associative law)

(iii) z + 0 = z = 0 + z, so o acts as the additive identity for the set of complex numbers.

Negative of a complex number:

For a complex number, z = x + iy, the negative is defined as -z = (-x) + i(-y) = -x - iy.

Note that z + (-z) = (x - x) + i(y - y) = 0 + i0 = 0.

Thus, -z acts as the additive inverse of z.


Solved examples on addition of two complex numbers:

1. Find the addition of two complex numbers (2 + 3i) and (-9 - 2i).

Solution:

(2 + 3i) + (-9 - 2i)

= 2 + 3i - 9 - 2i

= 2 - 9 + 3i - 2i

= -7 + i

 

2. Evaluate: (2√3 + 5i) + (√3 - 7i)

Solution:

2√3 + 5i + √3 - 7i

= 2√3 + √3 + 5i - 7i

= 3√3 - 2i

 

3. Express the complex number (1 - i) + (-1 + 6i) in the standard form a + ib.

Solution:

(1 - i) + (-1 + 6i)

= 1 - i -1 + 6i

= 1 - 1 - i + 6i

= 0 + 5i, which is the required form.


Note: The final answer of addition of two complex numbers must be in simplest or standard form a + ib.







11 and 12 Grade Math 

From Addition of Two Complex Numbers to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. 4th Grade Mental Math on Roman Numerals | Roman Numerals Quiz

    Feb 23, 24 03:55 PM

    In 4th grade mental math on numbers, students can practice different questions on write the Hindu-Arabic numerals, write the Roman Numerals, comparison of roman numerals, addition of roman numerals.

    Read More

  2. 4th Grade Mental Math on Numbers | Mental Math 4th Grade with Answers

    Feb 23, 24 02:24 PM

    4th Grade Mental Math on Numbers
    In 4th grade mental math on numbers, students can practice different questions on numbers in figures, number name, place value, face value, comparison of number and formation of greatest and smallest…

    Read More

  3. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 23, 24 01:28 PM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More

  4. Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

    Feb 22, 24 04:15 PM

    Roman Numbers Table
    Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

    Read More

  5. Roman Symbols | What are Roman Numbers? | Roman Numeration System

    Feb 22, 24 02:30 PM

    Roman Numbers
    Do we know from where Roman symbols came? In Rome, people wanted to use their own symbols to express various numbers. These symbols, used by Romans, are known as Roman symbols, Romans used only seven…

    Read More