Slope of a Line

We will discuss here about the slope of a line or gradient of a line.

Concept of slope (or gradient):

If θ (≠ 90°) is the inclination of a straight line, then tan θ is called its slope or gradient. The slope of any inclined plane is the ratio between the vertical rise of the plane and its horizontal distance.

Concept of Slope

i.e., slope = \(\frac{vertical rise}{horizontal distance}\) = \(\frac{AB}{BC}\) = tan θ

Where θ is the angle which the plane makes with the horizontal

Slope of a straight line:

The slope of a straight line is the tangent of its inclination and is denoted by letter ‘m’ i.e. if the inclination of a line is θ, its slope m = tan θ.


(i) The slope of a line is positive if it makes an acute angle in the anti-clockwise direction with x-axis.

Positive Slope

Inclination θ = 45°

Therefore, slope = tan 45° = 1

Negative Slope

Inclination θ = 135° or -45°

Therefore, slope = tan (-45°) = - tan 45° = -1

(ii) The slope of a line is negative, if it makes an obtuse angle in the anti-clockwise direction with the x-axis or an acute angle in the clockwise direction with the x-axis.

(iii) Since tan θ is not defined when θ = 90°, therefore, the slope of a vertical line is not defined. i.e., slope of y-axis is m = tan 90° = ∞ i.e., not defined.

(iv) Slope of x-axis is m = tan 0° = 0.

(v) Since the inclination of every line parallel to x-axis is 0°, so its slope (m) = tan 0° = 0. Therefore, the slope of every horizontal line is 0.

10th Grade Math

From Slope of a Line to HOME

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.