Simple and Compound Surds

We will discuss about the simple and compound surds.

Definition of Simple Surd:

A surd having a single term only is called a monomial or simple surd. 

Surds which contains only a single term, are called as nominal or simple surds. For example \(\sqrt[2]{2}\), \(\sqrt[2]{5}\),\(\sqrt[2]{7}\), \(5\sqrt[3]{10}\), \(3\sqrt[4]{12}\), \(a\sqrt[n]{x}\) are simple surds.

More example, each of the surds √2, ∛7, ∜6, 7√3, 2√a, 5∛3, m∛n, 5 ∙ 7\(^{3/5}\) etc. is a simple surd.


Definition of Compound Surd:

The algebraic sum of two or more simple surds or the algebraic sum of a rational number and simple surds is called a compound scud. 

The algebraic sum of two or more simple surds or the algebraic sum of rational numbers and simple surds are called as binominal surds or compound surds. For example \(2+\sqrt[2]{3}\) is a sum of one rational number 2 and one simple surd \(\sqrt[2]{3}\), so this is a compound surd. \(\sqrt[2]{2} + \sqrt[2]{3}\) is a sum of two simple surds \(\sqrt[2]{2}\) and \(\sqrt[2]{3}\), so this is also a example of compound surd. Some other examples of compound surds are \(\sqrt[2]{5} -\sqrt[2]{7}\), \(\sqrt[3]{10} + \sqrt[3]{12}\), \(\sqrt[2]{x} + \sqrt[2]{y}\)

More example, each of the surds (√5 + √7), (√5 - √7), (5√8 - ∛7), (∜6 + 9), (∛7 + ∜6), (x∛y - b)  is a compound surd. 

Note: The compound surd is also known as binomial surd. That is, the algebraic sum of two surds or a surd and a rational number is called a binomial surd. 

For example, each of the surds (√5 + 2), (5 - ∜6), (√2 + ∛7) etc. is a binomial surd.


Problems on Simple Surds:

1. Arrange the following simple surds descending order.

\(\sqrt[2]{3}\), \(\sqrt[3]{9}\),\(\sqrt[4]{60}\)

Solution:

The given surds are \(\sqrt[2]{3}\), \(\sqrt[3]{5}\), \(\sqrt[4]{12}\).

The surds are in the order of 2, 3, and 4 respectively. If we need to compare their values, we need to express them in same order. As the LCM of 2, 3, and 4 is 12, we should express the surds in order 12.

\(\sqrt[2]{3}\) = \(3^{\frac{1}{2}}\) = \(3^{\frac{6}{12}}\)= \(729^{\frac{1}{12}}\) = \(\sqrt[12]{729}\)

\(\sqrt[3]{5}\) = \(5^{\frac{1}{3}}\) = \(5^{\frac{4}{12}}\)= \(625^{\frac{1}{12}}\) = \(\sqrt[12]{625}\)

\(\sqrt[4]{12}\) = \(12^{\frac{1}{4}}\) = \(12^{\frac{3}{12}}\) = \(1728^{\frac{1}{12}}\) = \(\sqrt[12]{1728}\)

Hence the descending order of the given surds is \(\sqrt[4]{12}\), \(\sqrt[2]{3}\), \(\sqrt[3]{5}\).


2. Arrange the following simple surds descending order.

\(2\sqrt[2]{10}\), \(4\sqrt[2]{7}\), \(5\sqrt[2]{3}\)

Solution:

If we need to compare the values of the given simple surds, we have to express them in the form of pure surds. As the orders of all three surds are same we don’t need change the order.

\(2\sqrt[2]{10}\) = \(\sqrt[2]{2^{2}\times 10}\) = \(\sqrt[2]{4\times 10}\) = \(\sqrt[2]{40}\)

\(4\sqrt[2]{7}\) = \(\sqrt[2]{4^{2}\times 7}\) = \(\sqrt[2]{16\times 7}\) = \(\sqrt[2]{112}\)

\(5\sqrt[2]{3}\) = \(\sqrt[2]{5^{2}\times 3}\) = \(\sqrt[2]{25\times 3}\)= \(\sqrt[2]{75}\)

Hence the descending order of the given surds is \(4\sqrt[2]{7}\), \(5\sqrt[2]{3}\), \(2\sqrt[2]{10}\).

Problems on Compound Surds:

1. If x = \(1+\sqrt[2]{2}\), then what is the value of \(x^{2} - \frac{1}{x^{2}}\)?

Solution:

Given x = \(1+\sqrt[2]{2}\)

We need find out 

\(x^{2}-\frac{1}{x^{2}}\)

= \(x^{2}-(\frac{1}{x})^{2}\)

As we know \(a^{2}-b^{2} = (a + b)(a - b)\)

We can write \(x^{2} - (\frac{1}{x})^{2}\) as

= \((x + \frac{1}{x})(x - \frac{1}{x})\)

Now we will find out separately the values of  \(x+\frac{1}{x}\) and  \(x-\frac{1}{x}\)

\(x+\frac{1}{x}\)

= \(1+\sqrt[2]{2}\)+\(\frac{1}{1+\sqrt{2}}\)

= \(\frac{(1+\sqrt{2})^{2}+1}{1+\sqrt{2}}\)

=\(\frac{1+2+2\sqrt{2}+1}{1+\sqrt{2}}\)

=\(\frac{4+2\sqrt{2}}{1+\sqrt{2}}\)

=\(\frac{2\sqrt{2}(1+\sqrt{2})}{1+\sqrt{2}}\)

=\(2\sqrt{2}\)\(x-\frac{1}{x}\)

=\(1+\sqrt[2]{2}\)-\(\frac{1}{1+\sqrt{2}}\)

=\(\frac{(1+\sqrt{2})^{2}-1}{1+\sqrt{2}}\)

=\(\frac{1+2+2\sqrt{2}-1}{1+\sqrt{2}}\)

=\(\frac{3+2\sqrt{2}}{1+\sqrt{2}}\)

So \(x^{2} - \frac{1}{x^{2}}\)

=\((x+\frac{1}{x})\cdot (x-\frac{1}{x})\)

=\((2\sqrt{2})(\frac{3+2\sqrt{2}}{1+\sqrt{2}})\)

=\(\frac{6\sqrt{3}+8}{1+\sqrt{2}}\)

=\(\frac{2(3\sqrt{3}+4)}{1+\sqrt{2}}\)


2. If x= \(\sqrt{2}+\sqrt{3}\) and y = \(\sqrt{2}-\sqrt{3}\) then what is the value of \(x^{2}- y^{2}\)?

Solution:

As we know \(a^{2}-b^{2} = (a+ b)(a - b)\)

\(x^{2}- y^{2}\)

= \((x+y)(x-y)\)

Now we will find out separately the values of (x + y) and (x - y).

   (x + y)

= \(\sqrt{2}+\sqrt{3}\) + \(\sqrt{2}-\sqrt{3}\)

= \(2\sqrt{2}\)(x - y)

= \(\sqrt{2} + \sqrt{3}\)-\(\sqrt{2} - \sqrt{3}\)

= \(2\sqrt{3}\)

So \(x^{2}- y^{2}\)

= \(2\sqrt{2}\times2\sqrt{3}\)

=\(4\sqrt{6}\)





11 and 12 Grade Math

From Simple and Compound Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  2. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More

  3. Mental Math on Geometrical Shapes | Geometry Worksheets| Answer

    Apr 24, 24 03:35 PM

    In mental math on geometrical shapes we will solve different type of problems on simple closed curves, polygons, basic geometrical concepts, perpendicular lines, parallel lines, circle, terms relates…

    Read More

  4. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 24, 24 02:57 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  5. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 24, 24 12:38 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More