Worksheet on Union and Intersection of Sets

Worksheet on union and intersection of sets will help us to practice different types of questions using the basic ideas of the 'union' and 'intersection' of two or more sets.

1. State whether the following are true or false:

(i) If A = {5, 6, 7} and B = {6, 8, 10, 12}; then A ∪ B = {5, 6, 7, 8, 10, 12}.

(ii) If P = {a, b, c} and Q = {b, c, d}; then p intersection Q = {b, c}.

(iii) Union of two sets is the set of elements which are common to both the sets.

(iv) Two disjoint sets have atleast one element in common.

(v) Two overlap sets have all the elements common.

(v) If two given sets have no elements common to both the sets, the sets are said to me disjoint.

(vii)  If A and B are two disjoint sets then A ∩ B = { }, the empty set.

(viii) If M and N are two overlapping sets then intersection of two sets M and N is not the empty set.


2. Let A, B and C be three sets such that:

Set A = {2, 4, 6, 8, 10, 12}, set B = {3, 6, 9, 12, 15} and set C = {1, 4, 7, 10, 13, 16}.

Find:

(i) A ∪ B

(ii) A ∩ B

(iii) B ∩ A

(iv) B ∪ A

(v) B ∪ C

(vi) Is A ∪ B = B ∪ A?

(vii) Is B ∩ C = B ∪ C?


3. If A = {1, 3, 7, 9, 10}, B = {2, 5, 7, 8, 9, 10}, C = {0, 1, 3, 10}, D = {2, 4, 6, 8, 10}, E = {negative natural numbers} and F = {0}

Find:

(i) A ∪ B

(ii) E ∪ D

(iii) C ∪ F

(iv) C ∪ D

(v) B ∪ F

(vi) A ∩ B

(vii) C ∩ D

(viii) E ∩ D

(ix) C ∩ F

(x) B ∩ F

(xi) (A ∪ B) ∪ (A ∩ B)

(xii) (A ∪ B) ∩ (A ∩ B)


4. If A = {2, 3, 4, 5}, B ={c, d, e, f} and C = {4, 5, 6, 7};

Find:

(i) A ∪ B

(ii) A ∪ C

(iii) (A ∪ B) ∩ (A ∪ C)

(iv) A ∪ (B ∩ C)

(v) Is (A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C)?


5. If A = {a, b, c, d}, B = {c, d, e, f} and C = {b, d, f, g};

Find:

(i) A ∩ B

(ii) A ∩ C

(iii) (A ∩ B) ∪ (A ∩ C)

(iv) A ∩ (B ∪ C)

(v) Is (A ∩ B) ∪ (A ∩ C) = A ∩ (B ∪ C)?


Answers for the worksheet on union and intersection of sets are given below to check the exact answers of the above set of questions.


Answers:


1.  (i) True

 (ii) True

(iii) False

(iv) False

(v) False

(vi) True

(vii) True

(viii) True


2. (i) {2, 3, 4, 6, 7, 9, 10, 12, 15}

(ii) { }

(iii) {6, 12}

(iv) {2, 3, 4, 6, 8, 9, 10, 12, 15}

(v) {{1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16}

(vi) Yes, A ∪ B = B ∪ A

(vii) No, B ∩ C ≠ B ∪ C


3. (i) {1, 2, 3, 5, 7, 8, 9, 10}

(ii) {2, 4, 6, 8, 10}

(iii) {0, 1, 3, 10}

(iv) {0, 1, 2, 3, 4, 6, 8, 10}

(v) {0, 2, 5, 7, 8, 9, 10}

(vi) {7, 9, 10}

(vii) {10}

(viii) ∅

(ix) {0}

(x) ∅

(xi) {1, 2, 3, 5, 7, 8, 9, 10,

(xii) {7, 9, 10}


4. (i) {1, 2, 3, 4, 5, 7}

(ii) {2, 3, 4, 5, 6, 7}

(iii) {2, 3, 4, 5, 7}

(iv) {2, 3, 4, 5, 7}

(v) Yes, (A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C)


5. (i) {c, d}

(ii) {b ,d}

(iii) {b, c, d}

(iv) {b , c, d}

(v) Yes, (A ∩ B) ∪ (A ∩ C) = A ∩ (B ∪ C)

worksheet on union and intersection of sets

Sets and Venn-diagrams Worksheets

Worksheet on Set

Worksheet on Elements Form a Set

Worksheet to Find the Elements of Sets

Worksheet on Properties of a Set

Worksheet on Sets in Roster Form

Worksheet on Sets in Set-builder Form

Worksheet on Finite and Infinite Sets

Worksheet on Equal Sets and Equivalent Sets

Worksheet on Empty Sets

Worksheet on Subsets

Worksheet on Union and Intersection of Sets

Worksheet on Disjoint Sets and Overlapping Sets

Worksheet on Difference of Two Sets

Worksheet on Operation on Sets

Worksheet on Cardinal Number of a Set

Worksheet on Venn Diagrams



7th Grade Math Problems

Math Home Work Sheets

From Worksheet on Union and Intersection of Sets to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

    May 22, 24 06:21 PM

    The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

    Read More

  2. Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

    May 22, 24 06:14 PM

    Round off to Nearest 1000
    While rounding off to the nearest thousand, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the digit in the hundreds place is = to or > 5…

    Read More

  3. Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

    May 22, 24 05:17 PM

    Round off to Nearest 100
    While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

    Read More

  4. Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

    May 22, 24 03:49 PM

    Rounding to the Nearest 10
    Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…

    Read More

  5. Rounding Numbers | How do you Round Numbers?|Nearest Hundred, Thousand

    May 22, 24 02:33 PM

    rounding off numbers
    Rounding numbers is required when we deal with large numbers, for example, suppose the population of a district is 5834237, it is difficult to remember the seven digits and their order

    Read More