Worksheet on Trigonometric Identities

In worksheet on trigonometric identities we will prove various types of practice questions on establishing identities. Here you will get 50 different types of proving trigonometric identities questions with some selected questions hints.

1. Prove the trigonometric identity sin θ cos θ (tan θ + cot θ) = 1.

2. Prove the trigonometric identity sin\(^{4}\) θ – cos\(^{4}\) θ =  2 sin\(^{2}\) θ – 1

3. Prove the trigonometric identity sin\(^{4}\) θ - cos\(^{4}\) θ + 1 =  2 sin\(^{2}\) θ

4. Prove the trigonometric identity cos\(^{4}\) θ - sin\(^{4}\) θ =  2 cos\(^{2}\) θ – 1

5. Prove the trigonometric identity sin α cos α(tan α - cot α) = 2 sin2 α - 1

6. Prove the trigonometric identity cos\(^{6}\) θ + sin\(^{6}\) θ =  1 - 3 sin\(^{2}\) θ ∙ cos\(^{2}\) θ

Hint: cos\(^{6}\) θ + sin\(^{6}\) θ = \((cos^{2} θ)^{3}\) + \((sin^{2} θ)^{3}\)

                      = (cos\(^{2}\) θ + sin\(^{2}\) θ)(cos\(^{4}\) θ - cos\(^{2}\) θ ∙ sin\(^{2}\) θ + sin\(^{4}\) θ)

                      = 1 ∙ {cos\(^{4}\) + sin\(^{4}\) θ - cos\(^{2}\) θ ∙ sin\(^{2}\) θ}

                      = 1 ∙ {\((cos^{2} θ + sin^{2} θ)^{2}\) - 2 cos\(^{2}\) θ ∙ sin\(^{2}\) θ - cos\(^{2}\) θ ∙ sin\(^{2}\) θ}

                      = 1 ∙ {\((cos^{2} θ + sin^{2} θ)^{2}\) - 3 cos\(^{2}\) θ ∙ sin\(^{2}\) θ}


7. Prove the trigonometric identity (a cos θ + b sin θ)\(^{2}\) + (a cos θ - b sin θ)\(^{2}\) = a\(^{2}\) + b\(^{2}\)

Worksheet on Trigonometric Identities

8. Prove the trigonometric identity (cos A + sin A)\(^{2}\) + (cos A - sin A)\(^{2}\) = 2

9. Prove the trigonometric identity (1 + tan θ)\(^{2}\) + (1 - tan θ)\(^{2}\) = 2 sec\(^{2}\) θ

10. Prove the trigonometric identity \(\frac{1}{sin^{2} A}\) - \(\frac{1}{sin^{2} B}\) = \(\frac{cos^{2} A - cos^{2} B}{sin^{2} A ∙ sin^{2} B}\)

11. Prove the trigonometric identity \(\frac{1}{1 + cos A}\) + \(\frac{1}{1 - cos A}\) = 2 csc\(^{2}\) A

12. Prove the trigonometric identity (cot θ + csc θ)2\(\frac{1 + cos θ}{1 - cos θ}\)

13. Prove the trigonometric identity \(\frac{1}{1 - sin A}\) - \(\frac{1}{1 + sin A}\) = 2 tan A ∙ sec A

14. Prove the trigonometric identity \(\frac{1}{1 - cos A}\) + \(\frac{1}{1 + cos A}\) = 2 cot A ∙ csc A

15. Prove the trigonometric identity (1 + sec A + tan A)(1 - csc A + cot A) = 2

16. Prove the trigonometric identity \(\frac{cos A}{1 + sin A}\) + \(\frac{cos A}{1 - sin A}\) = 2 sec A

17. Prove the trigonometric identity \(\frac{1}{1 - sin A}\) + \(\frac{1}{1 + sin A}\) = 2 sec\(^{2}\) A

18. Prove the trigonometric identity \(\frac{1}{sin A + cos A}\) + \(\frac{1}{sin A - cos A}\) = \(\frac{2 sin A}{1 – cos^{2} A}\)

19. Prove the trigonometric identity \(\frac{1 + sin θ}{1 - sin θ}\) = (sec θ + tan θ)2

20. Prove the trigonometric identity \(\frac{1 – sin A}{cos A}\) = \(\frac{cos A}{1 + sin A}\)

21. Prove the trigonometric identity \(\frac{cos θ}{1 + sin θ}\) + \(\frac{1 + sin θ}{cos θ}\) = 2 sec θ

22. Prove the trigonometric identity \((\frac{1 + cos A}{sin A})^{2}\) = \(\frac{1 + cos A}{1 - cos A}\)

23. Prove the trigonometric identity \(\frac{sin A}{1 + cos A}\) + \(\frac{1 + cos A}{sin A}\) = 2 csc θ

24. Prove the trigonometric identity \(\sqrt{\frac{1 + sin θ}{1 - sin θ}}\) = sec θ + tan θ

25. Prove the trigonometric identity \(\sqrt{\frac{1 - cos A}{1 + cos A}}\) = csc A – cot A

26. Prove the trigonometric identity \(\sqrt{\frac{1 - cos θ}{1 + cos θ}}\) = \(\frac{sin θ}{1 + cos θ}\)

27. Prove the trigonometric identity \(\sqrt{\frac{1 - sin A}{1 + sin A}}\) = sec A – tan A

28. Prove the trigonometric identity \(\sqrt{\frac{csc A - 1}{csc A + 1}}\) = \(\sqrt{\frac{1 - sin A}{cos A}}\)

29. Prove the trigonometric identity \(\sqrt{\frac{1 + cos A}{1 - cos A}}\) = csc A + cot A

30. Prove the trigonometric identity \(\sqrt{\frac{1 + sin A}{1 - sin A}}\) + \(\sqrt{\frac{1 - sin A}{1 + sin A}}\) = 2 sec A

31. Prove the trigonometric identity (1 + cos θ)(1 – cos θ)(1 + cot\(^{2}\) θ) = 1

32. Prove the trigonometric identity (1 + tan\(^{2}\) A) sin A ∙ cos A = tan A

33. Prove the trigonometric identity cot\(^{2}\) α + cot\(^{2}\) β = \(\frac{sin^{2} β - sin^{2} α}{sin^{2} α ∙ sin^{2} β}\)

34. Prove the trigonometric identity tan A + cot A = sec A ∙ csc A

35. Prove the trigonometric identity \(\frac{csc A}{tan A + cot A}\) = cos A

35. Prove the trigonometric identity sec\(^{2}\) θ + csc\(^{2}\) θ = sec\(^{2}\) θ ∙ csc\(^{2}\) θ

36. Prove the trigonometric identity tan\(^{2}\) θ + cot\(^{2}\) θ + 2 = sec\(^{2}\) θ ∙ csc\(^{2}\) θ

37. Prove the trigonometric identity tan\(^{4}\) θ + tan\(^{2}\) θ = sec\(^{4}\) θ - sec\(^{2}\) θ

38. Prove the trigonometric identity csc\(^{4}\) θ – 2 csc\(^{2}\) θ + 2 sec\(^{2}\) θ - sec\(^{4}\) θ = cot\(^{4}\) θ - tan\(^{4}\) θ.

Hint: (csc\(^{4}\) θ – 2 csc\(^{2}\) θ) - (sec\(^{4}\) θ - 2 sec\(^{2}\) θ)

= (csc\(^{4}\) θ – 2 csc\(^{2}\) θ + 1 - 1) - (sec\(^{4}\) θ - 2 sec\(^{2}\) θ + 1 - 1)

= (csc\(^{4}\) θ – 2 csc\(^{2}\) θ + 1) - 1 - (sec\(^{4}\) θ - 2 sec\(^{2}\) θ + 1) + 1

= (csc2 θ - 1)2 - (sec2 θ - 1)2 

= (cot2 θ)2 - (tan2 θ)2 


39. Prove the trigonometric identity \(\frac{sin A – 2 sin^{3} A}{2cos^{3} A – cos A}\) = tan A.

40. Prove the trigonometric identity \(\frac{cos θ}{csc θ + 1}\) + \(\frac{cos θ}{csc θ - 1}\) = 2 tan θ

41. Prove the trigonometric identity  \(\frac{cos θ}{1 - tan θ}\) + \(\frac{sin θ}{1 - cot θ}\) = sin θ + cos θ

42. Prove the trigonometric identity 

                       \(\frac{1}{sec θ  - tan θ}\) - \(\frac{1}{cos θ}\) = \(\frac{1}{cos θ}\) - \(\frac{1}{sec θ  + tan θ}\)

Hint: \(\frac{1}{sec θ  - tan θ}\) + \(\frac{1}{sec θ  + tan θ}\) = \(\frac{2}{cos θ}\)


43. Prove the trigonometric identity \(\frac{tan θ}{csc θ + 1}\) + \(\frac{tan θ}{csc θ - 1}\) = 2 csc θ

44. Prove the trigonometric identity (sec θ + tan θ – 1)(sec θ - tan θ + 1) = 2 tan θ

Hint:  (sec θ + tan θ – 1)(sec θ - tan θ + 1)

      = [sec θ + (tan θ – 1)][sec θ - (tan θ - 1)] 

      = sec2 θ - (tan θ – 1)2

      = sec2 θ - tan2 θ – 2 tan θ + 1

      = (sec2 θ - tan2 θ) – 2 tan θ + 1


45. Prove the trigonometric identity \(\frac{tan A + cot B}{cot A + tan B}\) = \(\frac{tan A}{tan B}\)

46. Prove the trigonometric identity \(\frac{tan A + sec A - 1}{tan A – sec A + 1}\) = \(\frac{1 + sin A}{cos A}\)

Hint: \(\frac{tan A + sec A - 1}{tan A – sec A + 1}\)

     = \(\frac{tan A + sec A - 1}{tan A – sec A + 1}\) ∙ \(\frac{tan A + sec A + 1}{tan A – sec A + 1}\)

     = \(\frac{(tan A + sec A)^{2} - 1}{(tan A + 1)^{2} – sec^{2} A}\)


47. Prove the trigonometric identity \(\frac{1 + sin α}{csc α – cot α}\) - \(\frac{1 - sin α}{csc α + cot α}\) = 2 (1 + cot α)

48. Prove the trigonometric identity \(\frac{1}{cos θ  + sin θ - 1}\) + \(\frac{1}{cos θ  + sin θ + 1}\) = sec θ  + csc θ

49. Prove the trigonometric identity \(\frac{tan A}{1 - cot A}\) + \(\frac{cot A}{1 - tan A}\) = 1 + sec A ∙ csc A

50. Prove the trigonometric identity (sec x - 1)2 - (tan x - sin x)2 = (1 - cos x)2




10th Grade Math

From Worksheet on Trigonometric Identities to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Cardinal Numbers and Ordinal Numbers | Cardinal Numbers | Ordinal Num

    Dec 07, 23 01:27 AM

    Cardinal Numbers
    Cardinal numbers and ordinal numbers are explained here with the help of colorful pictures. There are many steps in a staircase as shown in the above figure. The given staircase has nine steps,

    Read More

  2. Smallest and Greatest Number upto 10 | Greater than | Less than | Math

    Dec 06, 23 11:21 PM

    Smallest and Greatest Number upto 10
    We will discuss about the smallest and greatest number upto 10.

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 06, 23 01:47 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More