Worksheet on Trigonometric Identities

In worksheet on trigonometric identities we will prove various types of practice questions on establishing identities. Here you will get 50 different types of proving trigonometric identities questions with some selected questions hints.

1. Prove the trigonometric identity sin θ cos θ (tan θ + cot θ) = 1.

2. Prove the trigonometric identity sin\(^{4}\) θ – cos\(^{4}\) θ =  2 sin\(^{2}\) θ – 1

3. Prove the trigonometric identity sin\(^{4}\) θ - cos\(^{4}\) θ + 1 =  2 sin\(^{2}\) θ

4. Prove the trigonometric identity cos\(^{4}\) θ - sin\(^{4}\) θ =  2 cos\(^{2}\) θ – 1

5. Prove the trigonometric identity sin α cos α(tan α - cot α) = 2 sin2 α - 1

6. Prove the trigonometric identity cos\(^{6}\) θ + sin\(^{6}\) θ =  1 - 3 sin\(^{2}\) θ ∙ cos\(^{2}\) θ

Hint: cos\(^{6}\) θ + sin\(^{6}\) θ = \((cos^{2} θ)^{3}\) + \((sin^{2} θ)^{3}\)

                      = (cos\(^{2}\) θ + sin\(^{2}\) θ)(cos\(^{4}\) θ - cos\(^{2}\) θ ∙ sin\(^{2}\) θ + sin\(^{4}\) θ)

                      = 1 ∙ {cos\(^{4}\) + sin\(^{4}\) θ - cos\(^{2}\) θ ∙ sin\(^{2}\) θ}

                      = 1 ∙ {\((cos^{2} θ + sin^{2} θ)^{2}\) - 2 cos\(^{2}\) θ ∙ sin\(^{2}\) θ - cos\(^{2}\) θ ∙ sin\(^{2}\) θ}

                      = 1 ∙ {\((cos^{2} θ + sin^{2} θ)^{2}\) - 3 cos\(^{2}\) θ ∙ sin\(^{2}\) θ}


7. Prove the trigonometric identity (a cos θ + b sin θ)\(^{2}\) + (a cos θ - b sin θ)\(^{2}\) = a\(^{2}\) + b\(^{2}\)

Worksheet on Trigonometric Identities

8. Prove the trigonometric identity (cos A + sin A)\(^{2}\) + (cos A - sin A)\(^{2}\) = 2

9. Prove the trigonometric identity (1 + tan θ)\(^{2}\) + (1 - tan θ)\(^{2}\) = 2 sec\(^{2}\) θ

10. Prove the trigonometric identity \(\frac{1}{sin^{2} A}\) - \(\frac{1}{sin^{2} B}\) = \(\frac{cos^{2} A - cos^{2} B}{sin^{2} A ∙ sin^{2} B}\)

11. Prove the trigonometric identity \(\frac{1}{1 + cos A}\) + \(\frac{1}{1 - cos A}\) = 2 csc\(^{2}\) A

12. Prove the trigonometric identity (cot θ + csc θ)2\(\frac{1 + cos θ}{1 - cos θ}\)

13. Prove the trigonometric identity \(\frac{1}{1 - sin A}\) - \(\frac{1}{1 + sin A}\) = 2 tan A ∙ sec A

14. Prove the trigonometric identity \(\frac{1}{1 - cos A}\) + \(\frac{1}{1 + cos A}\) = 2 cot A ∙ csc A

15. Prove the trigonometric identity (1 + sec A + tan A)(1 - csc A + cot A) = 2

16. Prove the trigonometric identity \(\frac{cos A}{1 + sin A}\) + \(\frac{cos A}{1 - sin A}\) = 2 sec A

17. Prove the trigonometric identity \(\frac{1}{1 - sin A}\) + \(\frac{1}{1 + sin A}\) = 2 sec\(^{2}\) A

18. Prove the trigonometric identity \(\frac{1}{sin A + cos A}\) + \(\frac{1}{sin A - cos A}\) = \(\frac{2 sin A}{1 – cos^{2} A}\)

19. Prove the trigonometric identity \(\frac{1 + sin θ}{1 - sin θ}\) = (sec θ + tan θ)2

20. Prove the trigonometric identity \(\frac{1 – sin A}{cos A}\) = \(\frac{cos A}{1 + sin A}\)

21. Prove the trigonometric identity \(\frac{cos θ}{1 + sin θ}\) + \(\frac{1 + sin θ}{cos θ}\) = 2 sec θ

22. Prove the trigonometric identity \((\frac{1 + cos A}{sin A})^{2}\) = \(\frac{1 + cos A}{1 - cos A}\)

23. Prove the trigonometric identity \(\frac{sin A}{1 + cos A}\) + \(\frac{1 + cos A}{sin A}\) = 2 csc θ

24. Prove the trigonometric identity \(\sqrt{\frac{1 + sin θ}{1 - sin θ}}\) = sec θ + tan θ

25. Prove the trigonometric identity \(\sqrt{\frac{1 - cos A}{1 + cos A}}\) = csc A – cot A

26. Prove the trigonometric identity \(\sqrt{\frac{1 - cos θ}{1 + cos θ}}\) = \(\frac{sin θ}{1 + cos θ}\)

27. Prove the trigonometric identity \(\sqrt{\frac{1 - sin A}{1 + sin A}}\) = sec A – tan A

28. Prove the trigonometric identity \(\sqrt{\frac{csc A - 1}{csc A + 1}}\) = \(\sqrt{\frac{1 - sin A}{cos A}}\)

29. Prove the trigonometric identity \(\sqrt{\frac{1 + cos A}{1 - cos A}}\) = csc A + cot A

30. Prove the trigonometric identity \(\sqrt{\frac{1 + sin A}{1 - sin A}}\) + \(\sqrt{\frac{1 - sin A}{1 + sin A}}\) = 2 sec A

31. Prove the trigonometric identity (1 + cos θ)(1 – cos θ)(1 + cot\(^{2}\) θ) = 1

32. Prove the trigonometric identity (1 + tan\(^{2}\) A) sin A ∙ cos A = tan A

33. Prove the trigonometric identity cot\(^{2}\) α + cot\(^{2}\) β = \(\frac{sin^{2} β - sin^{2} α}{sin^{2} α ∙ sin^{2} β}\)

34. Prove the trigonometric identity tan A + cot A = sec A ∙ csc A

35. Prove the trigonometric identity \(\frac{csc A}{tan A + cot A}\) = cos A

35. Prove the trigonometric identity sec\(^{2}\) θ + csc\(^{2}\) θ = sec\(^{2}\) θ ∙ csc\(^{2}\) θ

36. Prove the trigonometric identity tan\(^{2}\) θ + cot\(^{2}\) θ + 2 = sec\(^{2}\) θ ∙ csc\(^{2}\) θ

37. Prove the trigonometric identity tan\(^{4}\) θ + tan\(^{2}\) θ = sec\(^{4}\) θ - sec\(^{2}\) θ

38. Prove the trigonometric identity csc\(^{4}\) θ – 2 csc\(^{2}\) θ + 2 sec\(^{2}\) θ - sec\(^{4}\) θ = cot\(^{4}\) θ - tan\(^{4}\) θ.

Hint: (csc\(^{4}\) θ – 2 csc\(^{2}\) θ) - (sec\(^{4}\) θ - 2 sec\(^{2}\) θ)

= (csc\(^{4}\) θ – 2 csc\(^{2}\) θ + 1 - 1) - (sec\(^{4}\) θ - 2 sec\(^{2}\) θ + 1 - 1)

= (csc\(^{4}\) θ – 2 csc\(^{2}\) θ + 1) - 1 - (sec\(^{4}\) θ - 2 sec\(^{2}\) θ + 1) + 1

= (csc2 θ - 1)2 - (sec2 θ - 1)2 

= (cot2 θ)2 - (tan2 θ)2 


39. Prove the trigonometric identity \(\frac{sin A – 2 sin^{3} A}{2cos^{3} A – cos A}\) = tan A.

40. Prove the trigonometric identity \(\frac{cos θ}{csc θ + 1}\) + \(\frac{cos θ}{csc θ - 1}\) = 2 tan θ

41. Prove the trigonometric identity  \(\frac{cos θ}{1 - tan θ}\) + \(\frac{sin θ}{1 - cot θ}\) = sin θ + cos θ

42. Prove the trigonometric identity 

                       \(\frac{1}{sec θ  - tan θ}\) - \(\frac{1}{cos θ}\) = \(\frac{1}{cos θ}\) - \(\frac{1}{sec θ  + tan θ}\)

Hint: \(\frac{1}{sec θ  - tan θ}\) + \(\frac{1}{sec θ  + tan θ}\) = \(\frac{2}{cos θ}\)


43. Prove the trigonometric identity \(\frac{tan θ}{csc θ + 1}\) + \(\frac{tan θ}{csc θ - 1}\) = 2 csc θ

44. Prove the trigonometric identity (sec θ + tan θ – 1)(sec θ - tan θ + 1) = 2 tan θ

Hint:  (sec θ + tan θ – 1)(sec θ - tan θ + 1)

      = [sec θ + (tan θ – 1)][sec θ - (tan θ - 1)] 

      = sec2 θ - (tan θ – 1)2

      = sec2 θ - tan2 θ – 2 tan θ + 1

      = (sec2 θ - tan2 θ) – 2 tan θ + 1


45. Prove the trigonometric identity \(\frac{tan A + cot B}{cot A + tan B}\) = \(\frac{tan A}{tan B}\)

46. Prove the trigonometric identity \(\frac{tan A + sec A - 1}{tan A – sec A + 1}\) = \(\frac{1 + sin A}{cos A}\)

Hint: \(\frac{tan A + sec A - 1}{tan A – sec A + 1}\)

     = \(\frac{tan A + sec A - 1}{tan A – sec A + 1}\) ∙ \(\frac{tan A + sec A + 1}{tan A – sec A + 1}\)

     = \(\frac{(tan A + sec A)^{2} - 1}{(tan A + 1)^{2} – sec^{2} A}\)


47. Prove the trigonometric identity \(\frac{1 + sin α}{csc α – cot α}\) - \(\frac{1 - sin α}{csc α + cot α}\) = 2 (1 + cot α)

48. Prove the trigonometric identity \(\frac{1}{cos θ  + sin θ - 1}\) + \(\frac{1}{cos θ  + sin θ + 1}\) = sec θ  + csc θ

49. Prove the trigonometric identity \(\frac{tan A}{1 - cot A}\) + \(\frac{cot A}{1 - tan A}\) = 1 + sec A ∙ csc A

50. Prove the trigonometric identity (sec x - 1)2 - (tan x - sin x)2 = (1 - cos x)2

You might like these




10th Grade Math

From Worksheet on Trigonometric Identities to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?