Upper Quartile and the Method of Finding it for Raw Data

If the data are arranged in ascending or descending order then the variate lying at the middle between the largest and the median is called the upper quartile (or the third quartile), and it denoted by Q3.


In order to calculate the upper quartile of raw data, follow these steps.

Step I: Arrange the data in ascending order.

Step II: Finding the number of variates in the data. Let it be n. Then find the upper quartile as follows. If n is not divisible by 4 then the mth variate is the upper quartile, where m is the integer just greater than \(\frac{3n}{4}\).

If n is divisible by 4 then the upper quartile is the mean of the \(\frac{3n}{4}\)th variate and the variate just greater then it.

Solved Problems on Upper Quartile and the Method of Finding it for Raw Data:

1. Find the upper quartile of the first thirteen natural numbers.

Solution:

The variates in ascending order are

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.

Here n = 13.

So, \(\frac{3n}{4}\) = \(\frac{3 × 13}{4}\) = \(\frac{39}{4}\) = 9\(\frac{3}{4}\)

So, m = 10.

Therefore, the tenth variates is the upper quartile.

Hence, the upper quartile Q3 = 10.

 

2. If the variate 13 is removed from the above example, what will be the upper quartile?

Solution:

The variates in ascending order are

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

Here, n = 12.

So, \(\frac{3n}{4}\) = \(\frac{3 × 12}{4}\) = \(\frac{36}{4}\) = 9, i.e., \(\frac{3n}{4}\) is an integer.

Therefore, the mean of the 9th and 10th variates is Q3 (the upper quartile).

Therefore, Q3 = \(\frac{9 + 10}{2}\) = \(\frac{19}{2}\) = 9.5.

Upper Quartile and the Method of Finding it for Raw Data

3. The following data represent the number of books issued by a library on 12 different days.

96, 180, 98, 75, 270, 80, 102, 100, 94, 75, 200, 610.

Find the upper quartile

Solution:

Write the data in ascending order, we have

75, 75, 80, 94, 96, 98, 100, 102, 180, 200, 270, 610.

Here, n = 12.

So, \(\frac{3n}{4}\) = \(\frac{3 × 12}{4}\) = \(\frac{36}{4}\) = 9, i.e., \(\frac{3n}{4}\) is an integer.

Therefore, the mean of the 9th and 10th variates is Q3 (the upper quartile).

Therefore, Q3 = \(\frac{180 + 200}{2}\) = \(\frac{380}{2}\) = 190.







9th Grade Math

From Upper Quartile and the Method of Finding it for Raw Data to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Shifting of Digits in a Number |Exchanging the Digits to Another Place

    May 19, 24 06:35 PM

    Shifting of Digits in a Number
    What is the Effect of shifting of digits in a number? Let us observe two numbers 1528 and 5182. We see that the digits are the same, but places are different in these two numbers. Thus, if the digits…

    Read More

  2. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  3. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More