Theory of Quadratic Equation Formulae

The theory of quadratic equation formulae will help us to solve different types of problems on quadratic equation.

The general form of a quadratic equation is ax\(^{2}\) + bx + c = 0 where a, b, c are real numbers (constants) and a ≠ 0, while b and c may be zero.

(i) The Discriminant of a quadratic equation is ax\(^{2}\) + bx + c = 0 (a ≠ 0) is ∆ = b\(^{2}\) - 4ac

(ii) If α and β be the roots of the equation ax\(^{2}\) + bx + c = 0 (a ≠ 0) then

α + β =  -\(\frac{b}{a}\) = -\(\frac{coefficient of x}{coefficient of x^{2}}\)

and αβ = \(\frac{c}{a}\) = \(\frac{constant term}{coefficient of x^{2}}\)

(iii) The formula for the formation of the quadratic equation whose roots are given: x^2 - (sum of the roots)x + product of the roots = 0.

(iv) When a, b and c are real numbers, a ≠ 0 and discriminant is positive (i.e., b\(^{2}\) - 4ac > 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real and unequal.

 (v) When a, b and c are real numbers, a ≠ 0 and discriminant is zero (i.e., b\(^{2}\) - 4ac = 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real and equal.

 (vi) When a, b and c are real numbers, a ≠ 0 and discriminant is negative (i.e., b\(^{2}\) - 4ac < 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are unequal and imaginary. Here the roots α and β are a pair of the complex conjugates.

 (viii) When a, b and c are real numbers, a ≠ 0 and discriminant is positive and perfect square, then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real, rational unequal.

 (ix) When a, b and c are real numbers, a ≠ 0 and discriminant is positive but not a perfect square then the roots of the quadratic equation ax\(^{2}\) + bx + c = 0 are real, irrational and unequal.

 (x) When a, b and c are real numbers, a ≠ 0 and the discriminant is a perfect square but any one of a or b is irrational then the roots of the quadratic equation ax\(^{2}\) + bx + c = 0 are irrational.

(xi) Let the two quadratic equations are a1x^2 + b1x + c1 = 0 and a2x^2 + b2x + c2 = 0

Condition for one common root: (c1a2 - c2a1)^2 = (b1c2 - b2c1)(a1b2 - a2b1), which is the required condition for one root to be common of two quadratic equations.

Condition for both roots common: a1/a2 = b1/b2 = c1/c2

(xii) In a quadratic equation with real coefficients has a complex root α + iβ then it has also the conjugate complex root α - iβ.

(xiii) In a quadratic equation with rational coefficients has a irrational or surd root α + √β, where α and β are rational and β is not a perfect square, then it has also a conjugate root α - √β.




11 and 12 Grade Math 

From Geometric Progression Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Long Division Method with Regrouping and without Remainder | Division

    Jan 23, 25 01:55 PM

    We will discuss here how to solve step-by-step the long division method with regrouping and without remainder. Consider the following examples: 468 ÷ 3

    Read More

  2. Long Division Method Without Regrouping and Without Remainder | Divide

    Jan 23, 25 10:44 AM

    Dividing a 2-Digits Number by 1-Digit Number
    We will discuss here how to solve step-by-step the long division method without regrouping and without remainder. Consider the following examples: 1. 848 ÷ 4

    Read More

  3. Relationship between Multiplication and Division |Inverse Relationship

    Jan 23, 25 02:00 AM

    We know that multiplication is repeated addition and division is repeated subtraction. This means that multiplication and division are inverse operation. Let us understand this with the following exam…

    Read More

  4. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 02:23 PM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  5. Terms Used in Division | Dividend | Divisor | Quotient | Remainder

    Jan 22, 25 10:52 AM

    Divide 12 Candies
    The terms used in division are dividend, divisor, quotient and remainder. Division is repeated subtraction. For example: 24 ÷ 6 How many times would you subtract 6 from 24 to reach 0?

    Read More