Theory of Quadratic Equation Formulae

The theory of quadratic equation formulae will help us to solve different types of problems on quadratic equation.

The general form of a quadratic equation is ax2 + bx + c = 0 where a, b, c are real numbers (constants) and a ≠ 0, while b and c may be zero.

(i) The Discriminant of a quadratic equation is ax2 + bx + c = 0 (a ≠ 0) is ∆ = b2 - 4ac

(ii) If α and β be the roots of the equation ax2 + bx + c = 0 (a ≠ 0) then

α + β =  -ba = -coefficientofxcoefficientofx2

and αβ = ca = constanttermcoefficientofx2

(iii) The formula for the formation of the quadratic equation whose roots are given: x^2 - (sum of the roots)x + product of the roots = 0.

(iv) When a, b and c are real numbers, a ≠ 0 and discriminant is positive (i.e., b2 - 4ac > 0), then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real and unequal.

 (v) When a, b and c are real numbers, a ≠ 0 and discriminant is zero (i.e., b2 - 4ac = 0), then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real and equal.

 (vi) When a, b and c are real numbers, a ≠ 0 and discriminant is negative (i.e., b2 - 4ac < 0), then the roots α and β of the quadratic equation ax2 + bx + c = 0 are unequal and imaginary. Here the roots α and β are a pair of the complex conjugates.

 (viii) When a, b and c are real numbers, a ≠ 0 and discriminant is positive and perfect square, then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real, rational unequal.

 (ix) When a, b and c are real numbers, a ≠ 0 and discriminant is positive but not a perfect square then the roots of the quadratic equation ax2 + bx + c = 0 are real, irrational and unequal.

 (x) When a, b and c are real numbers, a ≠ 0 and the discriminant is a perfect square but any one of a or b is irrational then the roots of the quadratic equation ax2 + bx + c = 0 are irrational.

(xi) Let the two quadratic equations are a1x^2 + b1x + c1 = 0 and a2x^2 + b2x + c2 = 0

Condition for one common root: (c1a2 - c2a1)^2 = (b1c2 - b2c1)(a1b2 - a2b1), which is the required condition for one root to be common of two quadratic equations.

Condition for both roots common: a1/a2 = b1/b2 = c1/c2

(xii) In a quadratic equation with real coefficients has a complex root α + iβ then it has also the conjugate complex root α - iβ.

(xiii) In a quadratic equation with rational coefficients has a irrational or surd root α + √β, where α and β are rational and β is not a perfect square, then it has also a conjugate root α - √β.




11 and 12 Grade Math 

From Geometric Progression Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  2. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  3. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  4. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  5. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More