Theory of Quadratic Equation Formulae

The theory of quadratic equation formulae will help us to solve different types of problems on quadratic equation.

The general form of a quadratic equation is ax\(^{2}\) + bx + c = 0 where a, b, c are real numbers (constants) and a ≠ 0, while b and c may be zero.

(i) The Discriminant of a quadratic equation is ax\(^{2}\) + bx + c = 0 (a ≠ 0) is ∆ = b\(^{2}\) - 4ac

(ii) If α and β be the roots of the equation ax\(^{2}\) + bx + c = 0 (a ≠ 0) then

α + β =  -\(\frac{b}{a}\) = -\(\frac{coefficient of x}{coefficient of x^{2}}\)

and αβ = \(\frac{c}{a}\) = \(\frac{constant term}{coefficient of x^{2}}\)

(iii) The formula for the formation of the quadratic equation whose roots are given: x^2 - (sum of the roots)x + product of the roots = 0.

(iv) When a, b and c are real numbers, a ≠ 0 and discriminant is positive (i.e., b\(^{2}\) - 4ac > 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real and unequal.

 (v) When a, b and c are real numbers, a ≠ 0 and discriminant is zero (i.e., b\(^{2}\) - 4ac = 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real and equal.

 (vi) When a, b and c are real numbers, a ≠ 0 and discriminant is negative (i.e., b\(^{2}\) - 4ac < 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are unequal and imaginary. Here the roots α and β are a pair of the complex conjugates.

 (viii) When a, b and c are real numbers, a ≠ 0 and discriminant is positive and perfect square, then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real, rational unequal.

 (ix) When a, b and c are real numbers, a ≠ 0 and discriminant is positive but not a perfect square then the roots of the quadratic equation ax\(^{2}\) + bx + c = 0 are real, irrational and unequal.

 (x) When a, b and c are real numbers, a ≠ 0 and the discriminant is a perfect square but any one of a or b is irrational then the roots of the quadratic equation ax\(^{2}\) + bx + c = 0 are irrational.

(xi) Let the two quadratic equations are a1x^2 + b1x + c1 = 0 and a2x^2 + b2x + c2 = 0

Condition for one common root: (c1a2 - c2a1)^2 = (b1c2 - b2c1)(a1b2 - a2b1), which is the required condition for one root to be common of two quadratic equations.

Condition for both roots common: a1/a2 = b1/b2 = c1/c2

(xii) In a quadratic equation with real coefficients has a complex root α + iβ then it has also the conjugate complex root α - iβ.

(xiii) In a quadratic equation with rational coefficients has a irrational or surd root α + √β, where α and β are rational and β is not a perfect square, then it has also a conjugate root α - √β.




11 and 12 Grade Math 

From Geometric Progression Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 19, 24 04:39 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More

  2. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 04:01 PM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  3. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:50 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 19, 24 01:22 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More