Theory of Quadratic Equation Formulae

The theory of quadratic equation formulae will help us to solve different types of problems on quadratic equation.

The general form of a quadratic equation is ax\(^{2}\) + bx + c = 0 where a, b, c are real numbers (constants) and a ≠ 0, while b and c may be zero.

(i) The Discriminant of a quadratic equation is ax\(^{2}\) + bx + c = 0 (a ≠ 0) is ∆ = b\(^{2}\) - 4ac

(ii) If α and β be the roots of the equation ax\(^{2}\) + bx + c = 0 (a ≠ 0) then

α + β =  -\(\frac{b}{a}\) = -\(\frac{coefficient of x}{coefficient of x^{2}}\)

and αβ = \(\frac{c}{a}\) = \(\frac{constant term}{coefficient of x^{2}}\)

(iii) The formula for the formation of the quadratic equation whose roots are given: x^2 - (sum of the roots)x + product of the roots = 0.

(iv) When a, b and c are real numbers, a ≠ 0 and discriminant is positive (i.e., b\(^{2}\) - 4ac > 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real and unequal.

 (v) When a, b and c are real numbers, a ≠ 0 and discriminant is zero (i.e., b\(^{2}\) - 4ac = 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real and equal.

 (vi) When a, b and c are real numbers, a ≠ 0 and discriminant is negative (i.e., b\(^{2}\) - 4ac < 0), then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are unequal and imaginary. Here the roots α and β are a pair of the complex conjugates.

 (viii) When a, b and c are real numbers, a ≠ 0 and discriminant is positive and perfect square, then the roots α and β of the quadratic equation ax\(^{2}\) + bx + c = 0 are real, rational unequal.

 (ix) When a, b and c are real numbers, a ≠ 0 and discriminant is positive but not a perfect square then the roots of the quadratic equation ax\(^{2}\) + bx + c = 0 are real, irrational and unequal.

 (x) When a, b and c are real numbers, a ≠ 0 and the discriminant is a perfect square but any one of a or b is irrational then the roots of the quadratic equation ax\(^{2}\) + bx + c = 0 are irrational.

(xi) Let the two quadratic equations are a1x^2 + b1x + c1 = 0 and a2x^2 + b2x + c2 = 0

Condition for one common root: (c1a2 - c2a1)^2 = (b1c2 - b2c1)(a1b2 - a2b1), which is the required condition for one root to be common of two quadratic equations.

Condition for both roots common: a1/a2 = b1/b2 = c1/c2

(xii) In a quadratic equation with real coefficients has a complex root α + iβ then it has also the conjugate complex root α - iβ.

(xiii) In a quadratic equation with rational coefficients has a irrational or surd root α + √β, where α and β are rational and β is not a perfect square, then it has also a conjugate root α - √β.




11 and 12 Grade Math 

From Geometric Progression Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More