Subscribe to our YouTube channel for the latest videos, updates, and tips.


Sum and Difference of Algebraic Fractions

Learn step-by-step how to solve sum and difference of algebraic fractions with the help of few different types of examples.

1. Find the sum of \(\frac{x}{x^{2}  +  xy} + \frac{y}{(x  +  y)^{2}}\)

Solution:

We observe that the denominators of two fractions are

   x\(^{2}\) + xy                    and                    (x + y)\(^{2}\)

= x(x + y)                                          = (x + y) (x + y)

Therefore, L.C.M of the denominators = x(x + y) (x + y)

To make the two fractions having common denominator both the numerator and denominator of these are to be multiplied by x(x + y) (x + y) ÷ x(x + y) = (x + y) in case of \(\frac{x}{x^{2}  +  xy}\) and by x(x + y) (x + y) ÷ (x + y) (x + y) = x in case of \(\frac{y}{(x  +  y)^{2}}\)

Therefore, \(\frac{x}{x^{2}  +  xy} + \frac{y}{(x  +  y)^{2}} \)

= \(\frac{x}{x(x  +  y)} + \frac{y}{(x  +  y)(x  +  y)} \)

= \(\frac{x  \cdot  (x  +  y)}{x(x  +  y)  \cdot  (x  +  y)} + \frac{y  \cdot  x}{(x  +  y)(x  +  y)  \cdot  x} \)

= \(\frac{x(x  +  y)}{x(x  +  y)(x  +  y)} + \frac{xy}{x(x  +  y)(x  +  y)} \)

= \(\frac{x(x  +  y) + xy}{x(x  +  y)(x  +  y)} \)

= \(\frac{x^{2}  +  xy  +  xy}{x(x  +  y)(x  +  y)} \)

= \(\frac{x^{2}  +  2xy}{x(x  +  y)(x  +  y)} \)

= \(\frac{x(x  +  2y)}{x(x  +  y)(x  +  y)} \)

= \(\frac{x(x  +  2y)}{x(x  +  y)^{2}}\)


2. Find the difference of \(\frac{m}{m^{2}  +  mn} - \frac{n}{m  -  n}\)

Solution:

Here we observe that the denominators of two fractions are

   m\(^{2}\) + mn                    and                     m - n

= m(m + n)                                           = m - n

Therefore, L.C.M of the denominators = m(m + n) (m – n)

To make the two fractions having common denominator both the numerator and denominator of these are to be multiplied by m(m + n) (m – n) ÷ m(m + n) = (m - n) in case of \(\frac{m}{m^{2}  +  mn}\) and by m(m + n) (m – n) ÷ m - n = m(m + n) in case of \(\frac{n}{m  -  n}\)

Therefore, \(\frac{m}{m^{2}  +  mn} - \frac{n}{m  -  n}\)

= \(\frac{m}{m(m  +  n)} - \frac{n}{m  -  n}\)

= \(\frac{m  \cdot   (m  -  n)}{m(m  +  n)  \cdot   (m  -  n)} - \frac{n  \cdot   m(m  +  n)}{(m  -  n)  \cdot   m(m  +  n)}\)

= \(\frac{m(m  -  n)}{m(m  +  n)(m  -  n)} - \frac{mn(m  +  n)}{m(m  +  n)(m  -  n)}\)

= \(\frac{m(m  -  n)  -  mn(m  +  n)}{m(m  +  n)(m  -  n)}\)

= \(\frac{m^{2}  -  mn  -  m^{2}n  -  mn^{2}}{m(m  +  n)(m  -  n)}\)

= \(\frac{m^{2}  -  m^{2}n  -  mn  -  mn^{2}}{m(m^{2}  -  n^{2})}\)

 

3. Simplify the algebraic fractions: \(\frac{1}{x  -  y} - \frac{1}{x  +  y} - \frac{2y}{x^{2}  -  y^{2}}\)

Solution:

Here we observe that the denominators of the given algebraic fractions are

  (x – y)                   (x + y)                and                      x\(^{2}\) - y\(^{2}\)     

= (x – y)               = (x + y)                                         = (x + y) (x – y)  

Therefore, L.C.M of the denominators = (x + y) (x – y)  

To make the fractions having common denominator both the numerator and denominator of these are to be multiplied by (x + y) (x – y) ÷ (x – y) = (x + y) in case of \(\frac{1}{x  -  y}\), by (x + y) (x – y) ÷ (x + y) = (x – y) in case of \(\frac{1}{x  +  y}\) and by (x + y) (x – y) ÷ (x + y) (x – y) = 1 in case of \(\frac{2y}{x^{2}  -  y^{2}}\)

Therefore, \(\frac{1}{x  -  y} - \frac{1}{x  +  y} - \frac{2y}{x^{2}  -  y^{2}}\)

= \(\frac{1}{x  -  y} - \frac{1}{x  +  y} - \frac{2y}{(x  +  y)(x  -  y)}\)

= \(\frac{1  \cdot  (x  +  y)}{(x  -  y)  \cdot  (x  +  y) } - \frac{1  \cdot  (x  -  y)}{(x  +  y)  \cdot  (x  -  y)} - \frac{2y  \cdot  1}{(x  +  y)(x  -  y)  \cdot  1}\)

= \(\frac{(x  +  y)}{(x  +  y)(x  -  y)} - \frac{(x  -  y)}{(x  +  y)(x  -  y)} - \frac{2y}{(x  +  y)(x  -  y)}\)

= \(\frac{(x  +  y)  -  (x  -  y)  -  2y}{(x  +  y)(x  -  y)}\)

= \(\frac{x  +  y  -  x  +  y  -  2y}{(x  +  y)(x  -  y)}\)

= \(\frac{0}{(x  +  y)(x  -  y)}\)

= 0






8th Grade Math Practice

From Sum and Difference of Algebraic Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Conversion of Temperature | Temperature Worksheets | Ans

    Jun 24, 25 02:20 AM

    Worksheet on Conversion of Temperature
    We will practice the questions given in the worksheet on conversion of temperature from one scale into another. We know the two different temperature scales are the Fahrenheit scale and the

    Read More

  2. Worksheet on Temperature |Celsius to Fahrenheit, Fahrenheit to Celsius

    Jun 24, 25 01:58 AM

    Worksheet on Temperature
    In the worksheet on temperature we will solve 10 different types of questions.1. Which is colder 32°F or 0°C? 2. Water boils at ...°C and freezes at ....°F.

    Read More

  3. 5th Grade Temperature | Fahrenheit Scale | Celsius Scale | Thermometer

    Jun 24, 25 12:28 AM

    Mercury Thermometer
    We will discuss here about the concept of temperature. We have already learned about various types of measurements like length, mass capacity and time. But if we have fever, non of these measurements

    Read More

  4. Converting the Temperature from Fahrenheit to Celsius | Examples

    Jun 20, 25 12:53 PM

    In converting the temperature from Fahrenheit to Celsius the formula is, C = (5/9)(F - 32); The steps of converting from Fahrenheit to Celsius are reversed here.

    Read More

  5. Converting the Temperature from Celsius to Fahrenheit | Examples

    Jun 20, 25 12:01 PM

    In converting the temperature from Celsius to Fahrenheit the formula is F = (9/5)C + 32. Steps of converting from Celsius (°C) to Fahrenheit (°F)

    Read More