# Square of a Trinomial

How to expand the square of a trinomial?

The square of the sum of three or more terms can be determined by the formula of the determination of the square of sum of two terms.

Now we will learn to expand the square of a trinomial (a + b + c).

Let (b + c) = x

Then (a + b + c)2 = (a + x)2 = a2 + 2ax + x2

= a2 + 2a (b + c) + (b + c)2

= a2 + 2ab + 2ac + (b2 + c2 + 2bc)

= a2 + b2 + c2 + 2ab + 2bc + 2ca

Therefore, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

(a + b - c)2 = [a + b + (-c)]2

= a2 + b2 + (-c)2 + 2ab + 2 (b) (-c) + 2 (-c) (a)

= a2 + b2 + c2 + 2ab – 2bc - 2ca

Therefore, (a + b - c)2 = a2 + b2 + c2 + 2ab – 2bc - 2ca

(a - b + c)2 = [a + (- b) + c]2

= a2 + (-b2) + c2 + 2 (a) (-b) + 2 (-b) (-c) + 2 (c) (a)

= a2 + b2 + c2 – 2ab – 2bc + 2ca

Therefore, (a - b + c)2 = a2 + b2 + c2 – 2ab – 2bc + 2ca

(a - b - c)2 = [a + (-b) + (-c)]2

= a2 + (-b2) + (-c2) + 2 (a) (-b) + 2 (-b) (-c) + 2 (-c) (a)

= a2 + b2 + c2 – 2ab + 2bc – 2ca

Therefore, (a - b - c)2 = a2 + b2 + c2 – 2ab + 2bc – 2ca

Worked-out examples on square of a trinomial:

1. Expand each of the following.

(i) (2x + 3y + 5z)2

Solution:

(2x + 3y + 5z)2

We know, (a + b + c)2 = = a2 + b2 + c2 + 2ab + 2bc + 2ca

Here a = 2x, b = 3y and c = 5z

= (2x)2 + (3y)2 + (5z)2 + 2 (2x) (3y) + 2 (3y) (5z) + 2 (5z) (2x)

= 4x2 + 9y2 + 25z2 + 12xy + 30yz + 20zx

Therefore, (2x + 3y + 5z)2 = 4x2 + 9y2 + 25z2 + 12xy + 30yz + 20zx

(ii) (2l – 3m + 4n)2

Solution:

(2l – 3m + 4n)2

We know, (a - b + c)2 = a2 + b2 + c2 – 2ab - 2bc + 2ca

Here a = 2l, b = -3m and c = 4n

(2l + (-3m) + 4n)2

= (2l)2 + (3m)2 + (4n)2 + 2 (2l) (-3m) + 2 (-3m) (4n) + 2 (4n) (2l)

= 4l2 + 9m2 + 16n2 – 12lm – 24mn + 16nl

Therefore, (2l – 3m + 4n)2 = 4l2 + 9m2 + 16n2 – 12lm – 24mn + 16nl

(iii) (3x – 2y – z)2

Solution:

(3x – 2y – z)2

We know, (a - b - c) 2 = a2 + b2 + c2 – 2ab + 2bc – 2ca

Here a = 3x, b = -2y and c = -z

[3x + (-2y) + (-z)]2

= (3x)2 + (-2y)2 + (-z)2 + 2 (3x) (-2y) + 2 (-2y) (-z) + 2 (-z) (3x)

= 9x2 + 4y2 + z2 – 12xy + 4yz – 6zx

2. Simplify a + b + c = 25 and ab + bc + ca = 59.
Find the value of a2 + b2 + c2.

Solution:

According to the question, a + b + c = 25

Squaring both the sides, we get

(a+ b + c)2 = (25)2

a2 + b2 + c2 + 2ab + 2bc + 2ca = 625

a2 + b2 + c2 + 2(ab + bc + ca) = 625

a2 + b2 + c2 + 2 × 59 = 625 [Given, ab + bc + ca = 59]

a2 + b2 + c2 + 118 = 625

a2 + b2 + c2 + 118 – 118 = 625 – 118 [subtracting 118 from both the sides]

Therefore, a2 + b2 + c2 = 507

Thus, the formula of square of a trinomial will help us to expand.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

## Recent Articles

1. ### Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

May 22, 24 06:21 PM

The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

2. ### Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

May 22, 24 06:14 PM

While rounding off to the nearest thousand, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the digit in the hundreds place is = to or > 5…

3. ### Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

May 22, 24 05:17 PM

While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

4. ### Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

May 22, 24 03:49 PM

Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…