Roots of a Complex Number

Root of a complex number can be expressed in the standard form A + iB, where A and B are real.

In words we can say that any root of a complex number is a complex number

Let, z = x + iy be a complex number (x ≠ 0, y ≠ 0 are real) and n a positive integer. If the nth root of z be a then,

\(\sqrt[n]{z}\) = a

⇒ \(\sqrt[n]{x + iy}\) = a

⇒ x + iy = a\(^{n}\)

From the above equation we can clearly understand that

(i) a\(^{n}\) is real when a is purely real quantity and

(ii) a\(^{n}\) is either purely real  or purely imaginary quantity when a is purely imaginary quantity.

We already assumed that, x ≠ 0 and y ≠ 0.

Therefore, equation x + iy = a\(^{n}\) is satisfied if and only if a is an imaginary number of the form A + iB where A ≠ 0and B ≠ 0 are real.

Therefore, any root of a complex number is a complex number.


Solved examples on roots of a complex number:

1. Find the square roots of -15 - 8i.

Solution:

Let \(\sqrt{-15 - 8i}\) = x + iy. Then,

\(\sqrt{-15 - 8i}\) = x + iy

⇒ -15 – 8i = (x + iy)\(^{2}\)

⇒ -15 – 8i = (x\(^{2}\) - y\(^{2}\)) + 2ixy

⇒ -15 = x\(^{2}\) - y\(^{2}\) .................. (i)

and 2xy = -8 .................. (ii)

Now (x\(^{2}\) + y\(^{2}\))\(^{2}\) = (x\(^{2}\) - y\(^{2}\))\(^{2}\) + 4x\(^{2}\)y\(^{2}\)

⇒ (x\(^{2}\) + y\(^{2}\))\(^{2}\) = (-15)\(^{2}\) + 64 = 289

⇒ x\(^{2}\) + y\(^{2}\) = 17 ................... (iii) [x\(^{2}\) + y\(^{2}\) > 0]

On Solving (i) and (iii), we get

x\(^{2}\) = 1 and y\(^{2}\) = 16

⇒ x = ± 1 and y = ± 4.

From (ii), 2xy is negative. So, x and y are of opposite signs.

Therefore, x = 1 and y = -4 or, x = -1 and y = 4.

Hence, \(\sqrt{-15 - 8i}\) = ± (1 - 4i).


2. Find the square root of i.

Solution:

Let √i = x + iy. Then,

√i = x + iy

⇒ i = (x + iy)\(^{2}\)

⇒ (x\(^{2}\) - y\(^{2}\)) + 2ixy = 0 + i

⇒ x\(^{2}\) - y\(^{2}\) = 0 .......................... (i)

And 2xy = 1 ................................. (ii)

Now, (x\(^{2}\) + y\(^{2}\))\(^{2}\) = (x\(^{2}\) - y\(^{2}\))\(^{2}\) + 4x\(^{2}\)y\(^{2}\)

(x\(^{2}\) + y\(^{2}\))\(^{2}\) = 0 + 1 = 1 ⇒ x\(^{2}\) + y\(^{2}\) = 1 ............................. (iii), [Since, x\(^{2}\) + y\(^{2}\) > 0]

Solving (i) and (iii), we get

x\(^{2}\) = ½ and y\(^{2}\) = ½

⇒ x = ±\(\frac{1}{√2}\) and y = ±\(\frac{1}{√2}\)

From (ii), we find that 2xy is positive. So, x and y are of same sign.

Therefore, x = \(\frac{1}{√2}\) and y = \(\frac{1}{√2}\) or, x = -\(\frac{1}{√2}\) and y = -\(\frac{1}{√2}\)

Hence, √i = ±(\(\frac{1}{√2}\) + \(\frac{1}{√2}\)i) = ±\(\frac{1}{√2}\)(1 + i)






11 and 12 Grade Math 

From Root of a Complex Number to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 10, 24 02:35 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More