Roots of a Complex Number

Root of a complex number can be expressed in the standard form A + iB, where A and B are real.

In words we can say that any root of a complex number is a complex number

Let, z = x + iy be a complex number (x ≠ 0, y ≠ 0 are real) and n a positive integer. If the nth root of z be a then,

\(\sqrt[n]{z}\) = a

⇒ \(\sqrt[n]{x + iy}\) = a

⇒ x + iy = a\(^{n}\)

From the above equation we can clearly understand that

(i) a\(^{n}\) is real when a is purely real quantity and

(ii) a\(^{n}\) is either purely real  or purely imaginary quantity when a is purely imaginary quantity.

We already assumed that, x ≠ 0 and y ≠ 0.

Therefore, equation x + iy = a\(^{n}\) is satisfied if and only if a is an imaginary number of the form A + iB where A ≠ 0and B ≠ 0 are real.

Therefore, any root of a complex number is a complex number.


Solved examples on roots of a complex number:

1. Find the square roots of -15 - 8i.

Solution:

Let \(\sqrt{-15 - 8i}\) = x + iy. Then,

\(\sqrt{-15 - 8i}\) = x + iy

⇒ -15 – 8i = (x + iy)\(^{2}\)

⇒ -15 – 8i = (x\(^{2}\) - y\(^{2}\)) + 2ixy

⇒ -15 = x\(^{2}\) - y\(^{2}\) .................. (i)

and 2xy = -8 .................. (ii)

Now (x\(^{2}\) + y\(^{2}\))\(^{2}\) = (x\(^{2}\) - y\(^{2}\))\(^{2}\) + 4x\(^{2}\)y\(^{2}\)

⇒ (x\(^{2}\) + y\(^{2}\))\(^{2}\) = (-15)\(^{2}\) + 64 = 289

⇒ x\(^{2}\) + y\(^{2}\) = 17 ................... (iii) [x\(^{2}\) + y\(^{2}\) > 0]

On Solving (i) and (iii), we get

x\(^{2}\) = 1 and y\(^{2}\) = 16

⇒ x = ± 1 and y = ± 4.

From (ii), 2xy is negative. So, x and y are of opposite signs.

Therefore, x = 1 and y = -4 or, x = -1 and y = 4.

Hence, \(\sqrt{-15 - 8i}\) = ± (1 - 4i).


2. Find the square root of i.

Solution:

Let √i = x + iy. Then,

√i = x + iy

⇒ i = (x + iy)\(^{2}\)

⇒ (x\(^{2}\) - y\(^{2}\)) + 2ixy = 0 + i

⇒ x\(^{2}\) - y\(^{2}\) = 0 .......................... (i)

And 2xy = 1 ................................. (ii)

Now, (x\(^{2}\) + y\(^{2}\))\(^{2}\) = (x\(^{2}\) - y\(^{2}\))\(^{2}\) + 4x\(^{2}\)y\(^{2}\)

(x\(^{2}\) + y\(^{2}\))\(^{2}\) = 0 + 1 = 1 ⇒ x\(^{2}\) + y\(^{2}\) = 1 ............................. (iii), [Since, x\(^{2}\) + y\(^{2}\) > 0]

Solving (i) and (iii), we get

x\(^{2}\) = ½ and y\(^{2}\) = ½

⇒ x = ±\(\frac{1}{√2}\) and y = ±\(\frac{1}{√2}\)

From (ii), we find that 2xy is positive. So, x and y are of same sign.

Therefore, x = \(\frac{1}{√2}\) and y = \(\frac{1}{√2}\) or, x = -\(\frac{1}{√2}\) and y = -\(\frac{1}{√2}\)

Hence, √i = ±(\(\frac{1}{√2}\) + \(\frac{1}{√2}\)i) = ±\(\frac{1}{√2}\)(1 + i)






11 and 12 Grade Math 

From Root of a Complex Number to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Money | Conversion of Money from Rupees to Paisa

    Dec 03, 24 01:29 AM

    Worksheet on Money
    Practice the questions given in the worksheet on money. This sheet provides different types of questions where students need to express the amount of money in short form and long form

    Read More

  2. 2nd Grade Money Worksheet | Conversion of Money | Word Problems

    Dec 03, 24 01:19 AM

    Match the following Money
    In 2nd grade money worksheet we will solve the problems on writing amount in words and figures, conversion of money and word problems on money. 1. Write T for true and F for false. (i) Rs. is written…

    Read More

  3. Subtraction of Money | Subtraction with Conversion, without Conversion

    Dec 02, 24 01:47 PM

    Subtraction of Money
    In subtraction of money we will learn how to subtract the amounts of money involving rupees and paise to find the difference. We carryout subtraction with money the same way as in decimal numbers. Whi…

    Read More

  4. Word Problems on Addition of Money |Money Word Problems|Money Addition

    Dec 02, 24 01:26 PM

    Word Problems on Addition of Money
    Let us consider some of the word problems on addition of money. We have solved the problems in both the methods i.e., with conversion into paise and without conversion into paise. Worked-out examples

    Read More

  5. Addition of Money | Add The Amounts of Money Involving Rupees & Paisa

    Nov 29, 24 01:26 AM

    3rd Grade Addition of Money
    In addition of money we will learn how to add the amounts of money involving rupees and paisa together. We carryout with money the same way as in decimal numbers. While adding we need to follow that t…

    Read More