Riders Based on Pythagoras’ Theorem

Here we will solve different types of examples on establishing riders based on Pythagoras’ theorem.

1. In the quadrilateral PQRS the diagonals PR and QS intersects at a right angle. Prove that PQ2+ RS2 = PS2 + QR2.

Diagonals are Intersects at a Right Angle

Solution:

Let the diagonals intersect at O, the angle of intersection being a right angle.

In the right-angle ∆POQ, PQ2 = OP2 + OQ2.

In the right-angle ∆ROS, RS2 = OR2 + OS2.

Therefore, PQ2 + RS2 = OP2 + OQ2 + OR2 + OS2 ................. (i)

In the right-angle ∆POS, PS2 = OP2 + OS2.

In the right-angle ∆QOR, QR2 = OQ2 + OR2.

Therefore, PS2 + QR2 = OP2 + OS2 + OQ2 + OR2 ................. (ii)

From (i) and (ii), PQ2+ RS2 = PS2 + QR2. (Proved).


2. In ∆XYZ, ∠Z = 90° and ZM ⊥ XY, where M is the foot of the perpendicular. Prove that \(\frac{1}{ZM^{2}}\) = \(\frac{1}{YZ^{2}}\) + \(\frac{1}{XZ^{2}}\).

Riders Based on Pythagoras’ Theorem

Solution:

In ∆XYZ and ∆ZYM,

∠XZY = ∠ZMY = 90°,

∠XYZ = ∠ZYM (Common Angle)

Therefore, by AA criterion of similarity,  ∆XYZ ∼ ∆ZYM.

\(\frac{XY}{YZ}\) = \(\frac{XZ}{ZM}\)

⟹ YZ ∙ XZ = XY ∙ ZM

Therefore, ZM = \(\frac{YZ ∙ XZ}{XY}\)

Therefore, \(\frac{1}{ZM^{2}}\) = \(\frac{XY^{2}}{YZ^{2}  ∙  XZ^{2}}\) = \(\frac{XZ^{2} + YZ^{2}}{YZ^{2}  ∙  XZ^{2}}\); [By Pythagoras’ theorem)

Therefore, \(\frac{1}{ZM^{2}}\) = \(\frac{1}{YZ^{2}}\) + \(\frac{1}{XZ^{2}}\). (Proved)


3. In ∆XYZ, ∠Z is acute and XM ⊥ YZ, M being the foot of the perpendicular. Prove that 2YZ ∙ ZM = YZ2 + ZX2 - XY2.

Riders Based on Pythagoras’ Theorem Image

Solution:

From the right-angled ∆XMY,

XY2 = XM2 + YM2

         = XM2 + (YZ - ZM)2

         = XM2 + YZ2 + ZM2 - 2YZ ∙ ZM (from algebra)

         = YZ2 - 2YZ ∙ ZM + (XM2 + ZM2)

         = YZ2 - 2YZ ∙ ZM + XZ2 (from right-angled ∆XMZ)

Therefore, 2YZ ∙ ZM = YZ2 + ZX2 – XY2. (Proved)


4. Let PQRS be a rectangle. O is a point inside the rectangle. Prove that OP2 + OR2 = OQ2 + OS2.

A Point Inside the Rectangle

Solution:

PQRS is a rectangle for which PQ = SR = length and QR = PS = breadth.

Join OP, OQ, OR and OS.

Draw XY through O, parallel to PQ.

As ∠QPS and ∠RSP are right angles, ∆PXO, ∆SXO, ∆RYO and ∆QYO are right-angled triangles.

Therefore, by Pythagoras’ theorem,

OP2 = PX2 + OX2,

OR2 = RY2 + OY2,

OQ2 = QY2 + OY2 and

OS2 = SX2 + OX2

Therefore, OP2 + OR2 = PX2 + OX2 + RY2 + OY2 ......... (i)

                OQ2 + OS2 = QY2 + OY2 + SX2 + OX2 ......... (ii)

But in the rectangle XSRY, SX = RY = breadth

and in the rectangle PXYQ, PX = QY = breadth.

Therefore, from (i) and (ii), OP2 + OR2 = OQ2 + OS2.







9th Grade Math

From Riders Based on Pythagoras’ Theorem to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 24, 25 03:25 PM

    Subtraction of Decimals
    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Apr 24, 25 10:18 AM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  3. Division by Two-Digit Numbers | Knowledge of Estimation | Division

    Apr 24, 25 10:12 AM

    Divide 5-Digit by 2-Digit Number
    In division by two-digit numbers we will practice dividing two, three, four and five digits by two-digit numbers. Consider the following examples on division by two-digit numbers: Let us use our knowl…

    Read More

  4. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 24, 25 01:45 AM

    Addition of Decimals
    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  5. Addition of Like Fractions | Examples | Videos | Worksheet | Fractions

    Apr 23, 25 09:23 AM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More