# Riders Based on Pythagoras’ Theorem

Here we will solve different types of examples on establishing riders based on Pythagoras’ theorem.

1. In the quadrilateral PQRS the diagonals PR and QS intersects at a right angle. Prove that PQ2+ RS2 = PS2 + QR2.

Solution:

Let the diagonals intersect at O, the angle of intersection being a right angle.

In the right-angle ∆POQ, PQ2 = OP2 + OQ2.

In the right-angle ∆ROS, RS2 = OR2 + OS2.

Therefore, PQ2 + RS2 = OP2 + OQ2 + OR2 + OS2 ................. (i)

In the right-angle ∆POS, PS2 = OP2 + OS2.

In the right-angle ∆QOR, QR2 = OQ2 + OR2.

Therefore, PS2 + QR2 = OP2 + OS2 + OQ2 + OR2 ................. (ii)

From (i) and (ii), PQ2+ RS2 = PS2 + QR2. (Proved).

2. In ∆XYZ, ∠Z = 90° and ZM ⊥ XY, where M is the foot of the perpendicular. Prove that $$\frac{1}{ZM^{2}}$$ = $$\frac{1}{YZ^{2}}$$ + $$\frac{1}{XZ^{2}}$$.

Solution:

In ∆XYZ and ∆ZYM,

∠XZY = ∠ZMY = 90°,

∠XYZ = ∠ZYM (Common Angle)

Therefore, by AA criterion of similarity,  ∆XYZ ∼ ∆ZYM.

$$\frac{XY}{YZ}$$ = $$\frac{XZ}{ZM}$$

⟹ YZ ∙ XZ = XY ∙ ZM

Therefore, ZM = $$\frac{YZ ∙ XZ}{XY}$$

Therefore, $$\frac{1}{ZM^{2}}$$ = $$\frac{XY^{2}}{YZ^{2} ∙ XZ^{2}}$$ = $$\frac{XZ^{2} + YZ^{2}}{YZ^{2} ∙ XZ^{2}}$$; [By Pythagoras’ theorem)

Therefore, $$\frac{1}{ZM^{2}}$$ = $$\frac{1}{YZ^{2}}$$ + $$\frac{1}{XZ^{2}}$$. (Proved)

3. In ∆XYZ, ∠Z is acute and XM ⊥ YZ, M being the foot of the perpendicular. Prove that 2YZ ∙ ZM = YZ2 + ZX2 - XY2.

Solution:

From the right-angled ∆XMY,

XY2 = XM2 + YM2

= XM2 + (YZ - ZM)2

= XM2 + YZ2 + ZM2 - 2YZ ∙ ZM (from algebra)

= YZ2 - 2YZ ∙ ZM + (XM2 + ZM2)

= YZ2 - 2YZ ∙ ZM + XZ2 (from right-angled ∆XMZ)

Therefore, 2YZ ∙ ZM = YZ2 + ZX2 – XY2. (Proved)

4. Let PQRS be a rectangle. O is a point inside the rectangle. Prove that OP2 + OR2 = OQ2 + OS2.

Solution:

PQRS is a rectangle for which PQ = SR = length and QR = PS = breadth.

Join OP, OQ, OR and OS.

Draw XY through O, parallel to PQ.

As ∠QPS and ∠RSP are right angles, ∆PXO, ∆SXO, ∆RYO and ∆QYO are right-angled triangles.

Therefore, by Pythagoras’ theorem,

OP2 = PX2 + OX2,

OR2 = RY2 + OY2,

OQ2 = QY2 + OY2 and

OS2 = SX2 + OX2

Therefore, OP2 + OR2 = PX2 + OX2 + RY2 + OY2 ......... (i)

OQ2 + OS2 = QY2 + OY2 + SX2 + OX2 ......... (ii)

But in the rectangle XSRY, SX = RY = breadth

and in the rectangle PXYQ, PX = QY = breadth.

Therefore, from (i) and (ii), OP2 + OR2 = OQ2 + OS2.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

May 18, 24 02:59 PM

Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

2. ### Numbers | Notation | Numeration | Numeral | Estimation | Examples

May 12, 24 06:28 PM

Numbers are used for calculating and counting. These counting numbers 1, 2, 3, 4, 5, .......... are called natural numbers. In order to describe the number of elements in a collection with no objects

3. ### Face Value and Place Value|Difference Between Place Value & Face Value

May 12, 24 06:23 PM

What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

4. ### Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

May 12, 24 06:09 PM

We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…